[发明专利]一种基于路况识别的燃料电池与超级电容系统优化方法有效
申请号: | 201810107805.4 | 申请日: | 2018-02-02 |
公开(公告)号: | CN108363855B | 公开(公告)日: | 2021-06-25 |
发明(设计)人: | 张日东;陶吉利 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06K9/62;G06F111/04 |
代理公司: | 杭州奥创知识产权代理有限公司 33272 | 代理人: | 王佳健 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于路况识别的燃料电池与超级电容系统优化方法。本发明针对混合动力汽车中燃料电池与超级电容系统之间的实时功率分配问题,提出了一种基于路况识别的自适应能量管理策略,能够最大化较少燃料消耗,利用设计的能量管理控制器进行功率分配。为了延长燃料电池的使用寿命和减少氢气消耗,设计算法优化一些关键参数,基于设计的多层感知器分类器提取的特征,使新能源汽车能够成功地识别当前的驾驶模式,在超级电容的充电状态维持在期望的限度内,在各种驾驶条件下可以实现更少的电流波动和燃料消耗与传统的能源管理控制。 | ||
搜索关键词: | 一种 基于 路况 识别 燃料电池 超级 电容 系统 优化 方法 | ||
【主权项】:
1.一种基于路况识别的燃料电池与超级电容系统优化方法,其特征在于该方法具体是:步骤1、建立燃料电池与超级电容系统中被控对象的机理模型,具体是:1.1首先根据燃料电池的实际过程,建立燃料电池的机理模型,传递函数形式如下:![]()
其中,Edcell(s)为输出电压拉氏变换形式,I(s)为当前输出电流拉氏变换形式,λe常数增益,τe整体流量延迟系数;mH2燃料电池反应中的总氢消耗,
为氢的分子量,AFC为每个单元活动区域的面积,F为法拉第常数,I为当前输出电流,Ncell单元活动区域的个数;1.2具有功率负载的超级电容系统的模型,形式如下:![]()
其中,SOC是超级电容的充电状态,v是终端电压,i是终端电流,P是终端功率,R是匹配的终端电阻,vc是超级电容端电压,vmax是超级电容允许的最大电压,C为超级电容的电容值;1.3驾驶模式识别设计,多层感知器神经网络分类器提取的特征,形式如下:![]()
其中,hi为隐藏节点,nH隐藏节点个数,xj为输入节点特征向量,wij第i个输入节点和第j个隐藏节点的权重,wi0是i个输入节点的阈值,p为输入层节点数,exp()为表示指数;1.4提高控制精度设计误差,形式如下:![]()
其中,zk为第k个输出节点的输出z为其向量形式,wkj第j隐藏节点和第k个输出节点的权重,hj为第j个隐藏节,wk0是k个输出节点的阈值,ck为k分量二进制向量分类器,c为其向量形式,E为定义的误差,q为输出节点个数;1.5利用梯度下降反向传播算法,最小化误差E,形式如下:Δc=(z‑c).*c.*(1‑c)Δh=ΔcT*W2*hT.*(1‑hT)其中,Δc为实际二进制向量,Δh分类器输出,.*为矩阵点乘符号,T为转置符号,W2为设计的权重系数;1.6为了提高速度,添加动量项到权重更新方程中:wij(t)=wij(t‑1)‑ηΔhixj+η[wij(t‑1)‑wij(t‑2)],i=1,…,p;j=1,…,nHwjk(t)=wjk(t‑1)‑ηΔcjΔhk+η[wjk(t‑1)‑wjk(t‑2)],j=1,…,nH;k=1,…,q其中,wjk(t‑1)和wjk(t‑2)分别为t‑1时刻和t‑2时刻的第k个输出节点和第j隐藏节点的权重,η为(0,1)之间的学习率,Δcj为第j个实际二进制向量,Δhk第k个输出相关分类器输出,Δhi第i个输入相关分类器输出,wij(t‑1)和wij(t‑2)分别为t‑1时刻和t‑2时刻的第i个输入节点和第j个隐藏节点的权重,p输入节点数;1.7隐藏层和输出层的阈值的更新可以如下获得,形式如下:wi0=wi0‑ηΔhi+η(wi0(t‑1)‑wi0(t‑2)),i=1,…,nHwk0=wk0‑ηΔci+η(wk0(t‑1)‑wk0(t‑2)),k=1,…,p其中,wk0(t‑1)和wk0(t‑2)分别为t‑1时刻和t‑2时刻第k个输出节点的阈值,wi0(t‑1)和wi0(t‑2)分别为t‑1时刻和t‑2时刻第i个输入节点的阈值;步骤2、设计被控对象的批次过程控制器,具体是:2.1为了在约束条件下跟踪参考值,并且在未知过程中保持期望的控制性能,选取被控对象的性能指标函数J,最小化性能指标函数J即可,形式如下:
s.t.PFC+PSC=Pdem![]()
![]()
![]()
![]()
SOCmin≤SOCj是燃料电池的当前方差,PFC是燃料电池的输出功率,
为PFC的最大值,Pdem为需求功率,iFC是燃料电池提供的电流,
为iFC的最大值,ΔPFC为燃料电池的功率变化,
为ΔPFC的最大值,PSC为超级电容提供的功率,
和
分别PSC的最小值和最大值,iSC为超级电容提供的电流,
和
分别为iSC的最小值和最大值,SOCmin和SOCmax分别为最小充电状态值和最大充电状态值,vFC为燃料电池设定电压的最小值,ω为两个目标的权重系数;K是整个驱动行程中的样本数目,s.t.表示所受约束;2.2使用先进控制算法求解性能指标函数,对能量管理控制器中的参数进行优化,过程如下,根据待优化问题进行参数编码:Ci=[c1i,…cji,…,c20i] =[c1i,…,c13i,σ1i,σ2i,σ3i,k1i,k2i,k3i,k4i]其中,Ci为第i个染色体编码,i=1,2,…,N,N为种群大小;Ci中元素cji选取方式如下:cji=min+δ·(max‑min)1≤j≤20其中,δ是(0,1)之间的随机数;min和max分别为根据能量管理控制器设置的最小数和最大数;2.3选择轮盘选择方法,根据目标函数的值来计算概率分布,形式如下:
其中,fi=1/Ji,Ji是具有第i个体的带约束的目标函数值;2.4根据算法计算交叉算子,形式如下:Ci'=αCi+(1‑α)Ci+1Ci'+1=αCi+1+(1‑α)Ci其中,α为(0,1)之间的随机数,Ci'和Ci'+1为第i和i+1个更新后的个体后代;若Ci中的元素cji发生变异,则根据步骤2.2中,生成新的元素cji;2.5结合步骤1得到设计控制器的输出uf(k),可以表述如下:
Pf=(uf(k)+k(i))Pdem,i=1,…,nH其中,r1和r2分别为分配数,
为处理后的推理数,
为I1的隶属程度,
为I2的隶属程度,Pf为燃料电池输出功率,k(i)为驱动条件;2.6在下一时刻,重复步骤2.2到2.5的方法,继续求解新的优化参数,得到最优燃料电池输出功率,并依次循环。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810107805.4/,转载请声明来源钻瓜专利网。