[发明专利]一种AR系统手势识别方法有效

专利信息
申请号: 201810025105.0 申请日: 2018-01-11
公开(公告)号: CN108334814B 公开(公告)日: 2020-10-30
发明(设计)人: 付明磊;胡海霞 申请(专利权)人: 浙江工业大学
主分类号: G06K9/00 分类号: G06K9/00;G06N3/04;G06N3/08
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省杭*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于卷积神经网络结合用户习惯性行为分析的AR系统手势识别方法,包括以下步骤:步骤1:用户习惯性手势图像采集:由用户随机提供一组手势,将这组手势作为标准手势,采集该组手势图像,记为标准组;根据标准组手势模型图,构建其对应的实际标签类别;设置不同的标签类别触发相应AR系统指定功能;步骤2:手势区域图像检测:分别对标准组、训练样本组及测试样本组的手势图像进行手势区域图像检测,以实现图像中肤色与非肤色区域的分割;步骤3:卷积神经网络实现手势特征识别:设计卷积神经网络初步结构模型,用样本数据训练并测试调整卷积神经网络模型,将二值化图像直接输入卷积神经网络。本发明手势识别准确率较高、附加设备成本较低。
搜索关键词: 一种 ar 系统 手势 识别 方法
【主权项】:
1.一种基于卷积神经网络结合用户习惯性行为分析的AR系统手势识别方法,其特征在于:所述手势识别方法包括以下步骤:步骤1:用户习惯性手势图像采集由用户随机提供一组手势,将这组手势作为标准手势,采集该组手势图像,记为标准组;根据标准组手势模型图,构建其对应的实际标签类别;设置不同的标签类别触发相应AR系统指定功能;由用户重复n次上述手势,并采集所得n组手势图像,记为训练样本组;记录用户在AR终端实现人机交互时的N组手势图像,记为测试样本组;步骤2:手势区域图像检测分别对步骤1获取的标准组、训练样本组及测试样本组的手势图像进行手势区域图像检测,以实现图像中肤色与非肤色区域的分割;步骤3:卷积神经网络实现手势特征识别设计卷积神经网络初步结构模型,用步骤1所得的样本数据训练并测试调整卷积神经网络模型,将步骤2所得二值化图像直接输入所述卷积神经网络。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810025105.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top