[发明专利]基于多元时间序列的列车制动系统的故障检测方法有效
申请号: | 201711009648.5 | 申请日: | 2017-10-25 |
公开(公告)号: | CN107703920B | 公开(公告)日: | 2019-12-17 |
发明(设计)人: | 刘真;张猛 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G05B23/02 | 分类号: | G05B23/02 |
代理公司: | 11255 北京市商泰律师事务所 | 代理人: | 黄晓军 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于多元时间序列的列车制动系统的故障检测方法。该方法包括:采集列车制动系统的故障检测相关的样本数据,建立样本数据的多元时间序列矩阵;利用滑动时间窗口从多元时间序列矩阵中提取出时间序列片段的样本数据,将提取出的时间序列片段的样本数据与异常模式的特征数据进行匹配检测,根据匹配检测的结果获取列车制动系统在时间序列片段中的故障检测结果。本发明的方法从数据分析的角度出发,结合了机器学习和多元时间序列挖掘算法,并提出基于滑动时间窗口进行异常模式匹配的算法,通过模式匹配,可以对已有数据中的故障进行监测和智能诊断,从而可以更准确地发现异常发生的本质原因,对异常进行更好的定位。 | ||
搜索关键词: | 基于 多元 时间 序列 列车 制动 系统 故障 检测 方法 | ||
【主权项】:
1.一种基于多元时间序列的列车制动系统的故障检测方法,其特征在于,通过对列车制动系统出现过的历史异常情况进行综合分析,归纳各个异常的故障特点和数据特征,构建异常模式;包括:通过对列车制动系统出现过的历史异常情况进行综合分析,归纳各个异常的故障特点和数据特征,构建多个异常模式,每个异常模式包含一个或者多个诱导变量,所述诱导变量为影响列车制动系统的运作状态的属性变量,每个异常模式所包含的诱导变量具有时序特性,所述时序特性是指诱导变量在时间序列中前后时刻的数据之间有着牵连关系,不同异常模式之间具有不同的诱导变量的时序特性;/n所述异常模式中的所有属性变量在时间序列上的属性数据构成了所述异常模式的特征数据;所示方法具体包括:/n采集列车制动系统的故障检测相关的样本数据,建立所述样本数据的多元时间序列矩阵;包括:/n通过传感器采集列车制动系统的故障检测相关的运行数据,对所述运行数据中的缺失值进行填充,将所述运行数据中的字符类型的变量进行数字编码,将所述运行数据中的数值型的数据进行归一化处理,得到预处理后的运行数据;/n根据影响列车制动系统的运作状态的各个属性变量通过特征提取方法对所述预处理后的运行数据进行特征数据提取,将提取出来的特征数据作为列车制动系统的故障检测相关的样本数据;/n提取所述样本数据中包含的所有影响列车制动系统的运作状态的属性变量,以及每个属性变量对应的运行数据,根据所有属性变量对应的运行数据建立多元时间序列矩阵,所述多元时间序列矩阵为二维矩阵,所述多元时间序列矩阵中的各个列分别代表不同的属性变量,所述多元时间序列矩阵中的各个行分别代表不同的时间戳,所述多元时间序列矩阵中的元素代表行序号对应的时间戳上的列序号对应的属性变量的运行数据;/n利用滑动时间窗口从所述多元时间序列矩阵中提取出时间序列片段的样本数据,将提取出的时间序列片段的样本数据与所述异常模式的特征数据进行匹配检测,根据所述匹配检测的结果获取所述列车制动系统在所述时间序列片段中的故障检测结果。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711009648.5/,转载请声明来源钻瓜专利网。