[发明专利]基于多元时间序列的列车制动系统的故障检测方法有效
申请号: | 201711009648.5 | 申请日: | 2017-10-25 |
公开(公告)号: | CN107703920B | 公开(公告)日: | 2019-12-17 |
发明(设计)人: | 刘真;张猛 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G05B23/02 | 分类号: | G05B23/02 |
代理公司: | 11255 北京市商泰律师事务所 | 代理人: | 黄晓军 |
地址: | 100044 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 多元 时间 序列 列车 制动 系统 故障 检测 方法 | ||
本发明提供了一种基于多元时间序列的列车制动系统的故障检测方法。该方法包括:采集列车制动系统的故障检测相关的样本数据,建立样本数据的多元时间序列矩阵;利用滑动时间窗口从多元时间序列矩阵中提取出时间序列片段的样本数据,将提取出的时间序列片段的样本数据与异常模式的特征数据进行匹配检测,根据匹配检测的结果获取列车制动系统在时间序列片段中的故障检测结果。本发明的方法从数据分析的角度出发,结合了机器学习和多元时间序列挖掘算法,并提出基于滑动时间窗口进行异常模式匹配的算法,通过模式匹配,可以对已有数据中的故障进行监测和智能诊断,从而可以更准确地发现异常发生的本质原因,对异常进行更好的定位。
技术领域
本发明涉及列车故障检测技术领域,尤其涉及一种基于多元时间序列的列车制动系统的故障检测方法。
背景技术
目前,铁路运输的发展方向是重载和高速,即货运发展重载运输,客运发展高速铁路。重载运输是指在先进的铁路技术装备条件下,采用单机、双机或多机牵引的大功率内燃或电力机车,增加货物列车编组辆数,大幅度提高了列车牵引重量的运输方式。目前国内普遍采用具备微机模拟控制、网络通讯等信息化的功能的电控空气制动机的机车。
我国自主研制的新一代电控空气制动机,已广泛应用于神华、朔黄等货运专线的万吨重载组合列车,是列车制动系统的核心控制设备。电空制动机采用微机模拟控制技术,能实现列车自动制动与机车单独制动、空电联合制动、断钩保护、列车充风流量监测、无动力回送、制动重联、列车电控制动、列车速度监控配合等制动基本功能。制动机的安全可靠运行及精确故障诊断,是当前的研究热点问题。
在电控空气制动机中,传感器是机车制动机系统中非常关键的部件,制动系统通过传感器采集关键部件压力或流量信息掌握机车制动机状态信息,监控机车运行及利用状态信息实现对制动系统的闭环控制。由于机车中的传感器长期运行在各种恶劣环境下,加上外部干扰影响,导致传感器发生故障。包括传感器失效、漂移两种常见的故障。传感器漂移是指传感器转换比例关系不再是固定的,会缓慢地出现偏差且难以发现其微小变化,使得显示屏显示的采集压力、流量值与制动机部件实际值不符,从而导致制动机发出错误的制动指令,存在很大的安全隐患;传感器完全失效意味着传感器被损坏,传感器输出电流或电压为0,不能实时获得机车的各种状态信息。使用合适的仪器故障检测和识别技术可以防止故障传感器造成的性能下降、中途停车、甚至发生重大事故等不良后果。
由于制动机中的数据处理软件落后和故障检测技术落后,对于故障只能通过机车日志进行间接分析,鉴于制动机系统在重载列车安全运行中的重要性,国内外铁路部门和研究人员均对制动机系统的监控和故障诊断技术进行了大量的研究。
根据诊断方法的不同原理,对制动机系统的故障诊断可分为基于解析模型、基于知识、基于数据驱动的方法。
上述现有的对制动机系统的故障诊断方法的缺点为:
现有的解析模型法建立在精确数学模型的基础上采用参数估计、观测器的设计和等价关系法对系统进行监控,该方法对模型精度的依赖性较强,无法应用于同步制动系统这类数学模型和信号流模型无法精确描述的场景。
现有的基于知识法应用于监控对象的过程经验知识较为完备的场合,使用定性的模型来获得过程监控的指标,通过模糊推理方法、模式识别方法、定性观测器、知识观测器、定性仿真和神经元网络方法进行故障诊断,但是该方法对于经验知识并不完备的监控对象,无法设立精确的模型来对其进行监控。
现有的数据驱动法进行故障监测时,忽略了传感器监测值变化的时序性和动态性,只考虑了待监测变量之间的相关性,关注点在于每一个时刻的监测值是否超出正常的阈值,而没有在一段时间范围内整体观测数据的动态变化趋势,忽略了前后时刻之间的关联性,由于制动系统的故障存在关联性和复杂性,这样在进行故障监测时,如果只根据某一时刻的异常观测值很难对故障进行准确定位的。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711009648.5/2.html,转载请声明来源钻瓜专利网。