[发明专利]一种单导联脑电的睡眠自动分期方法有效
| 申请号: | 201710840703.9 | 申请日: | 2017-09-18 |
| 公开(公告)号: | CN107495962B | 公开(公告)日: | 2020-05-05 |
| 发明(设计)人: | 陈坤;张成;马靖;王广发;张珏;方竞 | 申请(专利权)人: | 北京大学 |
| 主分类号: | A61B5/0476 | 分类号: | A61B5/0476;A61B5/00 |
| 代理公司: | 北京万象新悦知识产权代理有限公司 11360 | 代理人: | 苏爱华 |
| 地址: | 100871*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种单导联脑电的睡眠自动分期方法,包括特征提取模块和分期优化模块。其中,特征提取模块是由CNNs卷积神经网络(1)、Softmax层(2)组成;分期优化模块由双向LSTM循环神经网络(3)和CRF条件随机场模型(4)构成;(1)、(2)、(3)和(4)顺序连接。该方法仅需要单导联的睡眠脑电信号,满足便携、舒适的睡眠监测需求;结合卷积神经网络和循环神经网络充分挖掘了脑电信号的时空特征,且具有动态学习能力,能够适应变化的疾病大环境;分期优化模块充分考虑N段30s脑电数据前后之间的联系,提高分期的准确性和模型的泛化能力。 | ||
| 搜索关键词: | 一种 单导联脑电 睡眠 自动 分期 方法 | ||
【主权项】:
一种单导联脑电的睡眠自动分期方法,其特征在于,所述方法仅需要单导联的睡眠脑电信号,自动分期方法包括训练过程S1和识别过程S2,如下:训练过程S1为:对每个固定时间段T标记好睡眠分期类别的脑电信号进行预处理,随机选取其中任意N段连续脑电信号输入至训练模型进行训练,直至模型收敛,得到训练好的模型;其中,T为30秒,N为3或5;识别过程S2为:对每个固定时间段T的待识别脑电信号进行预处理,选取其中任意N段连续脑电信号输入至S1中训练好的模型,输出睡眠分期结果;训练模型由特征提取模块和分期优化模块组成;其中,特征提取模块是由CNNs卷积神经网络(1)、Softmax层(2)组成;分期优化模块由双向LSTM循环神经网络(3)和CRF条件随机场模型(4)构成;(1)、(2)、(3)和(4)顺序连接;训练过程S1和识别过程S2中,脑电信号均为滑动输入模式,滑动窗大小为T~N*T,输出为第(N+1)/2段输入脑电信号对应的睡眠分期类别标签。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710840703.9/,转载请声明来源钻瓜专利网。





