[发明专利]基于模糊支持向量机的城市湖库蓝藻水华多变量预测方法有效
申请号: | 201710692183.1 | 申请日: | 2017-08-14 |
公开(公告)号: | CN107506857B | 公开(公告)日: | 2020-05-08 |
发明(设计)人: | 王小艺;张慧妍;王立;白晓哲;许继平;于家斌 | 申请(专利权)人: | 北京工商大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06K9/62 |
代理公司: | 北京永创新实专利事务所 11121 | 代理人: | 赵文颖 |
地址: | 100048*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于模糊支持向量机的城市湖库蓝藻水华多变量预测方法,包括以下几个步骤:步骤一、选取城市湖库蓝藻水华多变量预测建模中关键影响因素;步骤二、重构城市湖库蓝藻水华多变量时间序列的相空间;步骤三、最近邻域点优化确定;步骤四、获取城市湖库蓝藻水华多变量模糊支持向量机预测模型,进行城市湖库蓝藻水华预测。本发明提出相似系数分析定义对湖库蓝藻水华生成关键影响因素进行选取,将时间序列变化趋势一致性与时域特征结构相似性综合考虑以确定影响因素与表征因素之间的相似程度,以提取较完备的强相关信息,减少冗余信息,提高预测的鲁棒性和泛化能力。 | ||
搜索关键词: | 基于 模糊 支持 向量 城市 蓝藻 多变 预测 方法 | ||
【主权项】:
基于模糊支持向量机的城市湖库蓝藻水华多变量预测方法,包括以下几个步骤:步骤一、选取城市湖库蓝藻水华多变量预测建模中关键影响因素;步骤二、重构城市湖库蓝藻水华多变量时间序列的相空间;步骤三、最近邻域点优化确定;步骤四、获取城市湖库蓝藻水华多变量模糊支持向量机预测模型,进行城市湖库蓝藻水华预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工商大学,未经北京工商大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710692183.1/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理