[发明专利]变分模态分解与深度信念网络的短期负荷预测方法在审

专利信息
申请号: 201710564182.9 申请日: 2017-07-12
公开(公告)号: CN107392364A 公开(公告)日: 2017-11-24
发明(设计)人: 孙国强;梁智;卫志农;臧海祥;周亦洲;陈霜 申请(专利权)人: 河海大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q10/06;G06Q50/06;G06N3/08
代理公司: 南京苏高专利商标事务所(普通合伙)32204 代理人: 刘渊
地址: 211199 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于变分模态分解与深度信念网络的短期负荷预测方法,包括以下步骤1)采用变分模态分解方法将原始历史负荷数据分解为一系列特征互异的模态函数;2)采用近似熵计算各模态函数复杂度,将近似熵值相近的模态函数合并为新分量,并对每个分量进行特征分析;3)为计算影响因素与输出变量间的相关性,需要对数据进行归一化处理;4)结合负荷的周期特性,采用互信息理论从历史负荷、气象因素、日期类型等角度选取输入变量集合;5)构建基于深度信念网络(deep belief network,DBN)的短期负荷预测方法,通过提前24h负荷预测场景验证本发明方法有效性。本发明提供方法有效地提高了短期负荷预测精度,能够较好地解决电力系统负荷预测问题。
搜索关键词: 变分模态 分解 深度 信念 网络 短期 负荷 预测 方法
【主权项】:
一种基于变分模态分解与深度信念网络的短期负荷预测方法,其特征在于:包括以下步骤:(1)获取电力系统负荷预测所需的基本数据:历史负荷数据、气象数据、预测日日期类型数据;(2)采用变分模态分解方法将原始历史负荷数据分解为一系列特征互异的模态函数;(3)采用近似熵计算各模态函数复杂度,将近似熵值相近的模态函数合并为新序列,形成随机分量、细节分量和趋势分量,并对每个分量进行特征分析;(4)为计算影响因素与输出变量间的相关性,需要对数据进行归一化处理,以消除物理量纲的不同;(5)结合负荷的周期特性,对不同分量分别采用互信息理论从历史负荷、气象因素、日期类型等角度选取输入变量集合;(6)构建基于深度信念网络的短期负荷预测方法,并通过提前24h负荷预测场景验证本发明方法的有效性。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710564182.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top