[发明专利]一种基于邻接矩阵的图特征提取系统、图分类系统和方法在审
申请号: | 201710561961.3 | 申请日: | 2017-07-11 |
公开(公告)号: | CN108062551A | 公开(公告)日: | 2018-05-22 |
发明(设计)人: | 尹建伟;罗智凌;吴朝晖;邓水光;李莹;吴健 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06K9/46 | 分类号: | G06K9/46;G06K9/62 |
代理公司: | 浙江杭州金通专利事务所有限公司 33100 | 代理人: | 刘晓春 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于邻接矩阵的图特征提取系统、图分类系统和方法,通过将图对应的邻接矩阵中的连接信息元素集中到邻接矩阵的特定的对角线区域中,将非连接信息元素提前进行削减,进一步使用过滤矩阵沿对角线方向提取图的子图结构,然后采用层叠的卷积神经网络提取更大的子图结构,一方面大大减少了计算复杂度和计算量,解决了计算复杂度的限制和窗口大小的限制,并且能够通过较小的窗口捕获大型多顶点的子图结构,以及来自顶点和边的隐式相关结构的深层特征,提高了图分类的准确性和速度。 | ||
搜索关键词: | 一种 基于 邻接矩阵 特征 提取 系统 分类 方法 | ||
【主权项】:
1.一种在计算机环境中基于邻接矩阵的图特征提取系统,其特征在于:所述的图特征提取系统基于图的邻接矩阵抽取出图的特征,所述的特征直接对应支持分类的子图结构,所述的特征以至少一个向量的形式呈现,每一个向量对应一种混合态在图中的分布情况;所述的图特征提取系统包括连接信息规整模块和特征生成模块,其中:所述的连接信息规整模块用于将图对应的第一邻接矩阵中的全部顶点进行重新排序,得到第二邻接矩阵,所述第二邻接矩阵中的连接信息元素集中分布在所述第二邻接矩阵的宽度为n的对角线区域,其中n为正整数,n≥2且n < |V|,所述的|V|为第二邻接矩阵的行数或列数;所述的特征生成模块基于所述的第二邻接矩阵,生成图的特征,所述的特征直接对应支持分类的子图结构,每一个向量对应一种混合态在图中的分布情况;所述的图、子图均为图论中的图;所述的连接信息元素是图中的边在邻接矩阵中对应的元素;优选的,所述对角线区域指矩阵中从左上角至右下角的对角线区域;优选的,所述的特征生成模块利用过滤矩阵生成图的特征,所述的过滤矩阵为正方形矩阵;更优选的,所述的特征生成模块利用至少一个过滤矩阵,沿所述第二邻接矩阵的对角线区域进行过滤操作,得到至少一个向量,所述的至少一个向量对应于所述的图的特征,所述的特征直接对应支持分类的子图结构,每一个向量对应一种混合态在图中的分布情况;优选的,所述的分布情况是指图中出现该混合态中的子图结构的可能性;优选的,每一个所述的混合态代表任意多个子图结构对应的邻接矩阵的线性加权;更优选的,所述的线性加权是指每一个子图的邻接矩阵乘以该邻接矩阵对应的权值,然后对位相加到一起,得到一个与子图的邻接矩阵相同大小的矩阵;优选的,所述的过滤操作是利用所述的过滤矩阵对所述第二邻接矩阵对位的矩阵内积的加和,通过激活函数得到一个值,让过滤矩阵沿所述第二邻接矩阵的对角线方向移动,从而得到一组值,形成一个向量,该向量对应一种子图结构在图中的分布情况;更优选的,所述的激活函数为sigmoid函数、ReLU激活函数、pReLU函数;优选的,所述的特征生成模块利用不同的过滤矩阵,进行所述的过滤操作;优选的,所述过滤矩阵中每一个元素的初始值分别从高斯分布中取出的随机变量的值;优选的,所述的过滤矩阵中的元素为大于等于-1、小于等于1的实数;更优选的,所述的过滤矩阵中的元素为大于等于0、小于等于1的实数;优选的,所述的特征生成模块参与机器学习过程,所述机器学习过程用于调整所述过滤矩阵的元素的值;优选的,所述的机器学习过程是利用反向传播,利用分类的损失值,计算梯度值,进一步调节过滤矩阵中的各个元素的值;优选的,如果所述的图中边上没有权重,所述的连接信息元素的值为1,非连接信息元素的值为0;优选的,如果所述的图中边上带有权重,则所述的连接信息元素的值为边的权重值,非连接信息元素的值为0。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710561961.3/,转载请声明来源钻瓜专利网。
- 上一篇:可变叶面的桶式风力发电机
- 下一篇:乳液增粘剂以及堵水剂