[发明专利]基于张量线性判别分析降维的高光谱图像目标检测方法有效
申请号: | 201710433708.X | 申请日: | 2017-06-09 |
公开(公告)号: | CN107316009B | 公开(公告)日: | 2020-08-28 |
发明(设计)人: | 谷延锋;谭苏灵 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06T7/00 |
代理公司: | 哈尔滨华夏松花江知识产权代理有限公司 23213 | 代理人: | 岳昕 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于张量线性判别分析降维的高光谱图像目标检测方法,本发明涉及高光谱图像目标检测方法。本发明的目的是为了解决现有高光谱图像目标检测方法中未充分考虑在高分条件下空间约束增强的特性,不能从三维数据的整体进行信息挖掘,检测精度较低的问题。过程为:一:获得三阶目标、三阶背景和三阶待检测的测试样本张量块;二:使得目标和背景张量块在投影后的子空间里具有最大的可分性;三:将目标、背景和待检测的测试样本张量块投影到具有最大可分性的张量子空间中;四:计算每一个待检测的测试样本到背景和目标总距离;五:设定阈值,如果灰度值大于阈值,则确定该中心点的像元为目标,否则认为该中心点的像元为背景。本发明用于图像处理领域。 | ||
搜索关键词: | 基于 张量 线性 判别分析 光谱 图像 目标 检测 方法 | ||
【主权项】:
基于张量线性判别分析降维的高光谱图像目标检测方法,其特征在于:所述方法具体过程为:步骤一:对待检测的高光谱图像进行张量块的选择和划分,获得空X‑空Y‑光谱三阶目标张量块、空X‑空Y‑光谱三阶背景张量块和空X‑空Y‑光谱三阶待检测的测试样本张量块;步骤二:设定目标张量块、背景张量块和待检测的测试样本张量块每一维投影后维度的大小,利用步骤一中获得的目标张量块和背景张量块训练获取目标张量块、背景张量块和待检测的测试样本张量块三个维度上的投影矩阵,使得目标张量块和背景张量块在投影后的子空间里具有最大的可分性;步骤三:根据步骤二获得的三个维度上的投影矩阵,将步骤一得到的目标张量块、背景张量块和待检测的测试样本张量块投影到具有最大可分性的张量子空间中;步骤四:采用张量间角度距离的度量方式,计算在投影后的张量子空间中,每一个待检测的测试样本张量块到背景张量块的总距离distance_b(m),以及每一个待检测的测试样本张量块到目标张量块的总距离distance_t(m),m=1,...,M;步骤五:建立张量距离比检测模型,将步骤四中得到的距离distance_b(m)和距离distance_t(m)的比值radio(m)作为每个待检测的测试样本张量块中心点对应的灰度值,设定阈值η,如果任意一个待检测的测试样本张量块中心点对应的灰度值radio(m)大于阈值η,则确定该中心点的像元为目标,否则认为该中心点的像元为背景。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710433708.X/,转载请声明来源钻瓜专利网。