[发明专利]一种基于预测结果筛选的鲁棒数字图像标注方法有效

专利信息
申请号: 201710298619.9 申请日: 2017-04-27
公开(公告)号: CN107122800B 公开(公告)日: 2020-09-18
发明(设计)人: 李宇峰;王少博;周志华 申请(专利权)人: 南京大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 李玉平
地址: 210046 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于预测结果筛选的鲁棒机器学习方法,用于获得更可靠的数字图像标注结果。具体而言,本发明采用机器学习中的经典思想——最大化间隔原理,对待标注的数字图像在多种相似度度量下得到的预测结果进行筛选,选取其中间隔最大的结果作为最终预测结果输出,完成对数字图像的标注。预测结果具有大间隔理论上避免了预测结果难以区分的情况,具有不错的鲁棒性。为了显示地计算间隔,本发明采用机器学习经典损失函数来衡量预测结果的区分程度,从而得到间隔的大小。其中,损失函数指预测结果(连续值)与候选的预测标记(离散值)之间的差距,该损失越小代表了预测结果的间隔越大。
搜索关键词: 一种 基于 预测 结果 筛选 数字图像 标注 方法
【主权项】:
一种基于预测结果筛选的鲁棒数字图像标注方法,其特征在于,主要包括以下步骤:(1)采用多种相似度度量,获得当前待标注图像相关语义标记的多组预测结果;(2)对每组预测结果,应用损失函数计算其间隔大小;(3)选取损失最小(间隔最大)的一组作为最终预测结果,对相应的数字图像进行标注。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710298619.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top