[发明专利]一种基于核化特征和随机子空间集成的行人再辨识方法有效
申请号: | 201710212251.X | 申请日: | 2017-04-01 |
公开(公告)号: | CN107122795B | 公开(公告)日: | 2020-06-02 |
发明(设计)人: | 赵才荣;陈亦鹏;王学宽;卫志华;苗夺谦;田元 | 申请(专利权)人: | 同济大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 赵继明 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于核化特征和随机子空间集成的行人再辨识方法,包括以下步骤:S1,获取行人图像的训练样本集和测试样本集,确定两个样本间的核化函数;S2,分别将两个样本集的原始特征转化为核化特征;S3,在训练样本集的核化特征空间中,随机选取多个不同的子空间,分别计算不同和相同行人图像对的核化特征差值的协方差矩阵及其逆矩阵,得到图像对的核化特征差值的分布函数;S4,分别在各子空间下,计算样本对为相同行人的概率和为不同行人的概率,将两个概率的比值作为样本间的距离;S5,对距离进行集成,得到各样本对间的最终距离。与现有技术相比,本发明具有良好的行人再辨识能力,适用于各种不同的特征,具有较强的鲁棒性。 | ||
搜索关键词: | 一种 基于 特征 随机 空间 集成 行人 辨识 方法 | ||
【主权项】:
一种基于核化特征和随机子空间集成的行人再辨识方法,其特征在于,包括以下步骤:S1,获取行人图像的训练样本集和测试样本集,确定两个样本间的核化函数,在每个样本集中,同一个行人具有多个图像;S2,分别将两个样本集的原始特征转化为核化特征,核化特征的维度均为训练样本集中的样本个数;S3,在训练样本集的核化特征空间中,随机选取多个不同的子空间,分别在各子空间下,计算不同行人图像对的核化特征差值的协方差矩阵及其逆矩阵,计算相同行人图像对的核化特征差值的协方差矩阵及其逆矩阵,得到图像对的核化特征差值的分布函数;S4,分别在各子空间下,计算测试样本集中样本对的核化特征的差值,根据差值协方差矩阵及其逆矩阵和分布函数,计算样本对为相同行人的概率和为不同行人的概率,并将两个概率的比值作为两个样本间的距离;S5,对各不同子空间中计算出的距离进行集成,得到测试样本集中各样本对间的最终距离,用于行人辨识,最终距离越小,样本对为相同行人的可能性越高。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710212251.X/,转载请声明来源钻瓜专利网。