[发明专利]一种基于排序学习的服务推荐方法有效

专利信息
申请号: 201710145153.9 申请日: 2017-03-13
公开(公告)号: CN107026755B 公开(公告)日: 2019-07-16
发明(设计)人: 王海艳;郑旭晓;骆健 申请(专利权)人: 南京邮电大学
主分类号: H04L12/24 分类号: H04L12/24;H04L29/08;G06F17/16
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 朱桢荣
地址: 210000 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于排序学习的服务推荐方法,将传统服务推荐方法针对QoS进行预测推荐转化为进行排序推荐,提出了一种基于排序学习与矩阵分解的服务推荐方法。主要包括通过时间窗口的QoS记录计算出用户偏好程度因子,QoS波动程度因子,QoS衰减程度因子,再结合原始TOP值进行优化,通过构建损失函数进行矩阵分解,最后生成未知用户‑服务的排名评分,为用户进行推荐。
搜索关键词: 一种 基于 排序 学习 服务 推荐 方法
【主权项】:
1.一种基于排序学习的服务推荐方法,其特征在于,包括以下步骤:步骤一、计算TOP值:首先根据用户调用服务过程产生QoS,通过计算TOP值构建排序列表;其中,TOP是服务对应的服务质量在用户排序列表中排在第一位置的概率,QoS是服务质量;步骤二、优化TOP值:通过设置时间窗口收集一段时间内的QoS数据,并通过计算时间窗口内的QoS提取信息对步骤一计算得到TOP值进行优化;步骤三、训练特征矩阵:利用ListRank‑MF构建优化损失函数,通过矩阵分解技术对ListRank‑MF模型分解训练得到用户特征矩阵与服务特征矩阵;步骤四、列表预测:通过训练得到用户特征矩阵与服务特征矩阵计算得到推荐列表,从而根据推荐列表对用户进行推荐;TOP值的计算方式如下:其中,qi,j表示第i个用户调用第j个服务所产生的QoS记录,li为第i个用户所调用的服务列表,K为li的长度,qi,k为第i个用户调用服务列表li中的第k个服务所产生的QoS记录,为第i个用户调用第j个服务的QoS记录的原始的TOP值;步骤二中优化过后的TOP值为:其中,γ(i,j)为用户偏好程度因子,ε(i,j)为QoS波动程度因子,τ(i,j)为QoS衰减程度因子。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710145153.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top