[发明专利]一种基于非负表示系数的两阶段识别方法有效
申请号: | 201611196713.5 | 申请日: | 2016-12-22 |
公开(公告)号: | CN108229512B | 公开(公告)日: | 2021-10-08 |
发明(设计)人: | 陈才扣;李经善;王蓉;王禹 | 申请(专利权)人: | 扬州大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 孟睿 |
地址: | 225009 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于非负表示系数的两阶段识别方法。包括:用所有训练样本线性表示测试样本且约束表示系数非负,计算系数向量;将系数向量中元素降序排列,抽取出较大的系数及其对应的训练样本;将上一步所得的训练样本分类,计算每类样本的重构图像;用所有重构图像线性表示测试样本且约束表示系数非负,计算系数向量,根据残差对测试样本分类。本发明根据一定的筛选条件择优选取训练样本并用其线性表示测试样本,从而提高识别率。 | ||
搜索关键词: | 一种 基于 表示 系数 阶段 识别 方法 | ||
【主权项】:
1.一种基于非负表示系数的两阶段识别方法,其特征在于,第一阶段,用所有训练样本xij表示测试样本y且约束系数非负,并根据非负系数模型计算获得表示系数向量w;第二阶段,取出第表示系数向量w中前n个最大元素及其所对应的原始训练样本x1,x2,…,xn,并用前n个最大元素对应的训练样本x1,x2,…,xn组成字典矩阵Dnew,对字典矩阵Dnew中的全部样本进行分类,将所有属于第i类的训练样本组成字典矩阵Di,同时,从表示系数向量w中抽取出字典矩阵Di中各训练样本所对应的表示系数并组成表示系数向量αi;使用公式zj=Djαj计算获得没类样本对应的重构样本zj;用重构样本zj表示测试样本y且约束系数非负,并根据非负系数模型计算获得表示系数向量b;根据测试样本y的残差对测试样本y进行分类;其中,xij第i类的第j个训练样本,i=1,2,…,c,j=1,2,…,ni,c训练样本总类数,ni为每类训练样本的总个数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于扬州大学,未经扬州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611196713.5/,转载请声明来源钻瓜专利网。