[发明专利]一种基于稀疏表示的立体图像视觉显著提取方法有效
| 申请号: | 201611156751.8 | 申请日: | 2016-12-15 |
| 公开(公告)号: | CN106682599B | 公开(公告)日: | 2020-04-17 |
| 发明(设计)人: | 周武杰;顾鹏笠;张爽爽;潘婷;蔡星宇;邱薇薇;周扬;赵颖;陈芳妮;陈寿法 | 申请(专利权)人: | 浙江科技学院 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
| 代理公司: | 宁波奥圣专利代理事务所(普通合伙) 33226 | 代理人: | 周珏 |
| 地址: | 310023 浙*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于稀疏表示的立体图像视觉显著提取方法,其在字典学习阶段,先获取每幅立体图像的左视点图像的左视点视觉特征图和右视点图像的右视点视觉特征图,然后根据左视点图像和右视点图像及两者之间的视差图像、左视点视觉特征图和右视点视觉特征图,获取每幅立体图像的左右视点融合图像,接着根据所有左右视点融合图像进行联合字典训练操作得到融合图像字典表;在显著预测阶段,以相同的方式获取待视觉显著提取的立体图像的左右视点融合图像,然后根据融合图像字典表对左右视点融合图像进行处理得到融合稀疏特征图,进而提取得到视觉显著图;优点是符合显著语义特征,且具有较强的提取稳定性和较高的提取准确性。 | ||
| 搜索关键词: | 一种 基于 稀疏 表示 立体 图像 视觉 显著 提取 方法 | ||
【主权项】:
一种基于稀疏表示的立体图像视觉显著提取方法,其特征在于包括字典学习阶段和显著预测阶段两个过程;所述的字典学习阶段的具体步骤如下:①_1、选取K幅宽度为W且高度为H的立体图像,将第k幅立体图像记为SRGB,k,将SRGB,k的左视点图像记为{LRGB,k(x,y)},将SRGB,k的右视点图像记为{RRGB,k(x,y)},其中,1≤K≤100,1≤k≤K,1≤x≤W,1≤y≤H,LRGB,k(x,y)表示{LRGB,k(x,y)}中坐标位置为(x,y)的像素点的像素值,RRGB,k(x,y)表示{RRGB,k(x,y)}中坐标位置为(x,y)的像素点的像素值;①_2、根据每幅立体图像的左视点图像和右视点图像,并采用块匹配方法,计算每幅立体图像的左视点图像与右视点图像之间的视差图像,将{LRGB,k(x,y)}与{RRGB,k(x,y)}之间的视差图像记为{dk(x,y)},其中,dk(x,y)表示{dk(x,y)}中坐标位置为(x,y)的像素点的像素值;①_3、采用LOG滤波方法,对每幅立体图像的左视点图像进行操作,得到每幅立体图像的左视点图像的左视点视觉特征图,将{LRGB,k(x,y)}的左视点视觉特征图记为{LLOG,k(x,y)},其中,LLOG,k(x,y)表示{LLOG,k(x,y)}中坐标位置为(x,y)的像素点的像素值;同样,采用LOG滤波方法,对每幅立体图像的右视点图像进行操作,得到每幅立体图像的右视点图像的右视点视觉特征图,将{RRGB,k(x,y)}的右视点视觉特征图记为{RLOG,k(x,y)},其中,RLOG,k(x,y)表示{RLOG,k(x,y)}中坐标位置为(x,y)的像素点的像素值;①_4、根据每幅立体图像的左视点图像和右视点图像、左视点图像与右视点图像之间的视差图像、左视点图像的左视点视觉特征图和右视点图像的右视点视觉特征图,计算每幅立体图像的左右视点融合图像,将SRGB,k的左右视点融合图像记为{RL,R,k(x,y)},其中,RL,R,k(x,y)表示{RL,R,k(x,y)}中坐标位置为(x,y)的像素点的像素值;①_5、采用K‑SVD方法,对所有立体图像的左右视点融合图像进行联合字典训练操作,得到融合图像字典表,记为{Dc(x,y)},其中,Dc(x,y)表示{Dc(x,y)}中坐标位置为(x,y)的像素点的像素值;所述的显著预测阶段的具体步骤如下:②_1、令SRGB表示宽度为W且高度为H的待视觉显著提取的立体图像,将SRGB的左视点图像记为{LRGB(x,y)},将SRGB的右视点图像记为{RRGB(x,y)},其中,1≤x≤W,1≤y≤H,LRGB(x,y)表示{LRGB(x,y)}中坐标位置为(x,y)的像素点的像素值,RRGB(x,y)表示{RRGB(x,y)}中坐标位置为(x,y)的像素点的像素值;②_2、根据{LRGB(x,y)}和{RRGB(x,y)},采用块匹配方法,计算{LRGB(x,y)}与{RRGB(x,y)}之间的视差图像,记为{d(x,y)},其中,d(x,y)表示{d(x,y)}中坐标位置为(x,y)的像素点的像素值;②_3、采用LOG滤波方法,对{LRGB(x,y)}进行操作,得到{LRGB(x,y)}的左视点视觉特征图,记为{LLOG(x,y)},其中,LLOG(x,y)表示{LLOG(x,y)}中坐标位置为(x,y)的像素点的像素值;同样,采用LOG滤波方法,对{RRGB(x,y)}进行操作,得到{RRGB(x,y)}的右视点视觉特征图,记为{RLOG(x,y)},其中,RLOG(x,y)表示{RLOG(x,y)}中坐标位置为(x,y)的像素点的像素值;②_4、根据{LRGB(x,y)}和{RRGB(x,y)}、{d(x,y)}、{LLOG(x,y)}和{RLOG(x,y)},计算SRGB的左右视点融合图像,记为{RL,R(x,y)},其中,RL,R(x,y)表示{RL,R(x,y)}中坐标位置为(x,y)的像素点的像素值;②_5、根据字典学习阶段得到的融合图像字典表{Dc(x,y)},并采用K‑SVD求解方法对{RL,R(x,y)}进行处理,得到SRGB的融合稀疏特征图,记为{SR(x,y)},其中,SR(x,y)表示{SR(x,y)}中坐标位置为(x,y)的像素点的像素值;②_6、采用中央周边差操作对{SR(x,y)}中的所有像素点的像素值进行处理,得到SRGB的视觉显著图,记为{S(x,y)},其中,S(x,y)表示{S(x,y)}中坐标位置为(x,y)的像素点的像素值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江科技学院,未经浙江科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611156751.8/,转载请声明来源钻瓜专利网。
- 上一篇:辊道输送线停止器装置
- 下一篇:一种用于钢箱梁运输过程中的临时支撑装置





