[发明专利]一种热点话题下动态预测用户行为的系统及方法有效
申请号: | 201611144446.7 | 申请日: | 2016-12-13 |
公开(公告)号: | CN106651016B | 公开(公告)日: | 2020-08-04 |
发明(设计)人: | 肖云鹏;李晓娟;刘宴兵;李茜曦;柳靓云;刘晏驰;张克毅;赵金哲 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06F16/00 | 分类号: | G06F16/00 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 刘小红 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明请求保护一种热点话题下动态预测用户行为的系统及方法,属于社交网络分析领域。基于社交网络中用户间的关系网及用户的过往行为,根据用户参与话题的时间将用户分为热点用户和备选用户,通过时间离散化和时间切片的方法,将话题的时效性特征融入到其中,并且,针对热点话题在生命周期各阶段的数据不均匀和数据稀疏问题,构建了基于张量分解的预测模型。同时,为了体现话题发展的动态形式,在对话题进行时间切片后引入了增量张量分解模型对用户行为进行预测,使其动态的对用户行为进行预测,并且可以根据预测的用户行为把握话题的发展趋势。 | ||
搜索关键词: | 一种 热点话题 动态 预测 用户 行为 系统 方法 | ||
【主权项】:
一种热点话题下动态预测用户行为的系统,其特征在于,包括数据获取模块,属性提取模块,模型构建模块和模型预测分析模块;其中数据获取模块,用于获取用户行为数据和用户关系数据;属性提取模块,用于提取社交网络中的用户参与话题的时间延迟属性并分为热点用户和备选用户;模型构建模块,根据备选用户的信息采用张量分解方法,构建用户参与热点话题预测模型;模型预测分析模块,利用张量进行分解得到模式展开矩阵的特征矩阵和核心张量,根据得到的特征矩阵和核心张量计算近似张量,并根据得到的近似张量预测备选用户的行为,在话题发展的不同阶段,根据新加入的备选用户行为数据构成的新张量和当前得到的特征矩阵和核心张量动态更新得到新的特征矩阵和核心张量,然后再根据新的特征矩阵和核心张量预测下一阶段的用户行为,同时,根据每一阶段预测的用户行为,可以把握话题发展的趋势。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611144446.7/,转载请声明来源钻瓜专利网。