[发明专利]基于混合式协同训练的人体动作识别方法及系统有效

专利信息
申请号: 201610913531.9 申请日: 2016-10-20
公开(公告)号: CN106778796B 公开(公告)日: 2020-04-21
发明(设计)人: 姜震;景陈勇;彭长生;詹永照 申请(专利权)人: 江苏大学;江苏科海智能系统有限公司
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 212013 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于混合式协同训练的人体动作识别方法及系统。方法包括:利用人体动作识别领域中基于模板的KNN算法和基于概率统计的SVM算法来构建基分类器,然后进行二者间迭代的协同训练以提高它们的识别性能,同时改进协同训练中对伪标签样本的选择方法和迭代训练策略,最后对KNN模型和SVM模型的识别结果进行融合,得出待识别样本所属的人体动作类别。本发明利用不同类型的方法来构建分类器,通过它们之间的协同训练,可以实现不同识别方法的优势互补,有效解决了以往单一识别方法在复杂场景下识别效果不佳的问题。此外,引入伪标签样本作为新的训练样本,有效减少人工标注样本的成本。从而实现了以较少的训练样本达到更好识别准确率的目的。
搜索关键词: 基于 混合式 协同 训练 人体 动作 识别 方法 系统
【主权项】:
基于混合式协同训练的人体动作识别方法,其特征在于,包括:S1.分别选择一种基于模板的分类器KNN和一种基于概率统计的分类器SVM作为两个基分类器,进行二者之间的迭代协同训练,以提高它们的识别性能;S2.利用迭代协同训练后的两个基分类器KNN和SVM分别进行动作识别,然后对二者的识别结果进行融合,得到待识别样本所属的人体动作类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学;江苏科海智能系统有限公司,未经江苏大学;江苏科海智能系统有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610913531.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top