[发明专利]一种基于聚类算法的变压器故障诊断系统无效

专利信息
申请号: 201610538557.X 申请日: 2016-07-06
公开(公告)号: CN106202922A 公开(公告)日: 2016-12-07
发明(设计)人: 不公告发明人 申请(专利权)人: 吴本刚
主分类号: G06F19/00 分类号: G06F19/00;G06N3/12;G06K9/62;G01N33/28;G01R31/12
代理公司: 北京高航知识产权代理有限公司 11530 代理人: 赵永强
地址: 315200 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于聚类算法的变压器故障诊断系统,包括:样本采集模块,用于采集变压器的油中溶解气体数据,并将所述油中溶解气体数据作为原始样本;数据预处理模块,用于对原始样本中的数据进行清洗和筛选预处理;样本分析聚类模块,用于采用改进的K‑means聚类方法对预处理后的原始样本进行聚类分析,得到训练样本和测试样本;神经网络训练模块,用于构建神经网络,并进行优化训练,确定隐藏层的个数、中心位置、宽度以及输出权值;故障类别判断模块,用于向训练好的神经网络输入训练样本,求解后验概率,判断故障类别。本发明容易实施、能够提高故障诊断正确率及工作效率。
搜索关键词: 一种 基于 算法 变压器 故障诊断 系统
【主权项】:
一种基于聚类算法的变压器故障诊断系统,其特征在于,包括样本采集模块、数据预处理模块、样本分析聚类模块、神经网络训练模块和故障类别判断模块;所述样本采集模块用于采集变压器的油中溶解气体数据,并将所述油中溶解气体数据作为原始样本;所述数据预处理模块,用于对原始样本中的数据进行清洗和筛选预处理;所述样本分析聚类模块,用于采用改进的K‑means聚类方法对预处理后的原始样本进行聚类分析,得到训练样本和测试样本;所述神经网络训练模块,用于构建神经网络,并进行优化训练,确定隐藏层的个数、中心位置、宽度以及输出权值;所述故障类别判断模块,用于向训练好的神经网络输入训练样本,求解后验概率,判断故障类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于吴本刚,未经吴本刚许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610538557.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top