[发明专利]一种层次化商品信息过滤推荐方法有效

专利信息
申请号: 201610112904.2 申请日: 2016-02-29
公开(公告)号: CN105809474B 公开(公告)日: 2020-11-17
发明(设计)人: 杨余久;黄旭;邵航;张如意 申请(专利权)人: 深圳市未来媒体技术研究院;清华大学深圳研究生院
主分类号: G06Q30/06 分类号: G06Q30/06
代理公司: 深圳新创友知识产权代理有限公司 44223 代理人: 江耀纯
地址: 518000 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种层次化商品信息过滤推荐方法,包括如下步骤:对于推荐系统,构造一种分层泊松模型;对每一组有效用户商品对构造长度为K的向量,评分大小为对应用户偏好向量与商品属性向量的内积;采用变分推断的方法进行逼近后验分布,利用坐标上升法多次迭代直至收敛,推导出所有隐变量的近似分布;预测每组用户商品对评分,根据得分大小排序可对用户进行最终的推荐。本发明的优点在于:1、可以生成对商品用户的稀疏表示;准确拟合了用户商品的长尾效应;3、对未评分用户商品对有降权效果;4、对稀疏评分矩阵可作出快速推断;5、良好的拓展性,适用于大规模评分集。
搜索关键词: 一种 层次 商品信息 过滤 推荐 方法
【主权项】:
一种层次化商品信息过滤推荐方法,其特征在于包括如下步骤:A1:对于推荐系统,构造一种分层泊松模型;A2、对每一组有效用户商品对构造长度为K的向量zui,其中每一个分量zuik~Poisson(θukβik),评分大小为对应用户偏好向量与商品属性向量的内积,其中K为商品属性向量和用户偏好向量的长度,zui为每组用户、商品对构造的长度为K的辅助向量,θu为用户偏好向量,βi为商品属性向量,k为分量的序号,u为用户序号,i为商品序号;A3、采用变分推断的方法进行逼近后验分布,利用坐标上升法多次迭代直至收敛,推导出所有隐变量的近似分布;其中各参数的含义如下:β为βi的集合,θ表示θu的集合;ξu为用户偏好向量满足Gamma分布中的尺度参数,ξ表示ξu的集合,ηi为商品属性向量满足Gamma分布中的尺度参数,η为ηi的集合,z变量表示zui的集合;A4、预测每组用户商品对评分,根据得分大小排序可对用户进行最终的推荐,其中上标T表示向量转置,将列向量转置为行向量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市未来媒体技术研究院;清华大学深圳研究生院,未经深圳市未来媒体技术研究院;清华大学深圳研究生院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610112904.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top