[发明专利]一种利用训练数据训练模型的方法和训练系统有效
申请号: | 201610105840.3 | 申请日: | 2016-02-25 |
公开(公告)号: | CN107122327B | 公开(公告)日: | 2021-06-29 |
发明(设计)人: | 代斌;李屾;姜晓燕;杨旭;漆远;褚崴;王少萌;付子豪 | 申请(专利权)人: | 阿里巴巴集团控股有限公司 |
主分类号: | G06N20/00 | 分类号: | G06N20/00 |
代理公司: | 北京润泽恒知识产权代理有限公司 11319 | 代理人: | 苏培华 |
地址: | 英属开曼群岛大开*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请公开一种利用训练数据训练模型的方法和系统,所述训练数据包括多个样本,每一个样本包括N个特征,所述多个样本中对应的特征构成N个特征列,所述训练方法包括:计算每一个特征列的重要程度值;判断每一个特征列的重要程度值是否小于对应的阈值;当判断出所述N个特征列中的M个特征列的重要程度值小于对应的阈值时,将所述M个特征列进行降维处理,生成P个特征列,其中M<N,且P<M;将重要程度值大于或等于对应的阈值的(N‑M)个特征列和降维处理后生成的P个特征列合并;以及将合并后的所述多个样本输入机器学习算法模型,训练所述机器学习算法模型。本申请实施例能够对重要特征和辅助特征进行区别处理,达到训练特征参数可控,并提高模型训练的准确性的目的。 | ||
搜索关键词: | 一种 利用 训练 数据 模型 方法 系统 | ||
【主权项】:
一种利用训练数据训练模型的方法,所述训练数据包括多个样本,每一个样本包括N个特征,所述多个样本中对应的特征构成N个特征列,其特征在于,所述训练方法包括:计算每一个特征列的重要程度值;判断每一个特征列的重要程度值是否小于对应的阈值;当判断出所述N个特征列中的M个特征列的重要程度值小于对应的阈值时,将所述M个特征列进行降维处理,生成P个特征列,其中M<N,且P<M;将重要程度值大于或等于对应的阈值的(N‑M)个特征列和降维处理后生成的P个特征列合并,得到(N‑M+P)个特征列;以及将包括所述(N‑M+P)个特征列的训练数据输入机器学习算法模型,训练所述机器学习算法模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于阿里巴巴集团控股有限公司,未经阿里巴巴集团控股有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610105840.3/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置