[发明专利]一种基于单隐层神经网络的场景识别方法在审

专利信息
申请号: 201610069804.6 申请日: 2016-02-01
公开(公告)号: CN105678278A 公开(公告)日: 2016-06-15
发明(设计)人: 程东生;俞文静;范广璐;赵大青;何晓玲;孟辅贤;吴昊;石晓波;倪时龙;许成功;吕君玉;曾伟波 申请(专利权)人: 国家电网公司;国网安徽省电力公司;福建亿榕信息技术有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/36;G06K9/62
代理公司: 福州市鼓楼区京华专利事务所(普通合伙) 35212 代理人: 林晓琴
地址: 100000 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于单隐层神经网络的场景识别方法,其特征在于:包括训练阶段和识别阶段;所述训练阶段包括:对预先采集的用于训练的样本图像集进行预处理,提取预处理后的样本图像集的局部梯度统计特征,将所述局部梯度统计特征以及对应场景类别标签加入到单隐层神经网络分类器进行层级式监督学习,得到复数个不同的多类单隐层神经网络的最优参数,根据所述最优参数构建多层级场景分类器;所述识别阶段包括:对待识别的图像集进行预处理,提取预处理后的待识别图像集的局部梯度统计特征,将该局部梯度统计特征向量送入所述多层级场景分类器中进行识别,得到所属场景类的类别标注。本发明实现高精度场景识别。
搜索关键词: 一种 基于 单隐层 神经网络 场景 识别 方法
【主权项】:
一种基于单隐层神经网络的场景识别方法,其特征在于:包括训练阶段和识别阶段;所述训练阶段包括:对预先采集的用于训练的样本图像集进行预处理,提取预处理后的样本图像集的局部梯度统计特征,将所述局部梯度统计特征以及对应场景类别标签加入到单隐层神经网络分类器进行层级式监督学习,得到复数个不同的多类单隐层神经网络的最优参数,根据所述最优参数构建多层级场景分类器;所述识别阶段包括:对待识别的图像集进行预处理,提取预处理后的待识别图像集的局部梯度统计特征,将提取到的所述待识别图像的局部梯度统计特征向量送入所述多层级场景分类器中进行识别,得到所属场景类的类别标注。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国家电网公司;国网安徽省电力公司;福建亿榕信息技术有限公司,未经国家电网公司;国网安徽省电力公司;福建亿榕信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610069804.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top