[发明专利]一种改进的自适应混合高斯前景检测方法有效

专利信息
申请号: 201510520115.8 申请日: 2015-08-21
公开(公告)号: CN105354791B 公开(公告)日: 2019-01-11
发明(设计)人: 薛月菊;毛亮;林焕凯;朱婷婷 申请(专利权)人: 华南农业大学
主分类号: G06T1/00 分类号: G06T1/00
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 林丽明
地址: 510642 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种改进的自适应混合高斯前景检测方法,它首先利用混合高斯模型进行学习,形成初始化混合高斯背景模型;然后,对新输入的视频序列,以每隔N帧进行采样,利用加权时域均值滤波获取一幅图像帧,将其作为混合高斯建模的输入,进行背景模型更新;利用泊松分布自动判断当前帧是否存在背景突变,若不存在,保持正常的采样间隔和学习速率,否则,缩小间隔帧数和加快学习速率,更新背景模型,提取当前的背景帧;最后,利用当前帧与当前背景帧进行差分,通过最大熵方法获取自适应阈值,对获取的阈值进行加权平均,进行前景检测。该方法有效地克服了视频场景中树叶抖动、水波纹等运动干扰,通过周期性的采样减少了帧的运算量,提高了实时性。
搜索关键词: 一种 改进 自适应 混合 前景 检测 方法
【主权项】:
1.一种改进的自适应混合高斯前景检测方法,其特征在于,包括以下步骤:S1:取视频序列前75帧,利用混合高斯初始化背景模型,对输入的视频序列以采样间隔为N的方式进行采样,取当前帧与前N‑1帧图像序列进行加权ωi时域均值滤波获取一幅新的图像帧F;S2:判断采样得到的视频序列中的场景是否发生突变,若没有发生突变,保持正常的采样间隔N=5和学习率α=0.02;否则更新采样间隔帧数N=3,变异系数为λ,学习率α=λ*0.02,重新进行视频序列周期采样;S3:将滤波后的图像帧F作为当前帧,学习率为α=λ*0.02,采用自适应混合高斯方法更新其背景模型;S4:将当前背景帧与当前帧及其后N‑1帧图像序列进行最大熵求取自适应阈值,然后通过在线加权平均获取一个新的阈值Th,进行实时的前景检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南农业大学,未经华南农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510520115.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top