[发明专利]一种多类图像半监督分类方法及系统在审

专利信息
申请号: 201410708851.1 申请日: 2014-11-28
公开(公告)号: CN104463202A 公开(公告)日: 2015-03-25
发明(设计)人: 张召;梁雨宸;李凡长;张莉 申请(专利权)人: 苏州大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 常亮
地址: 215123 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种多类图像半监督分类方法及系统,首先对训练集中有标签图像样本和无标签图像样本进行相似性学习,构造相似近邻图和归一化的权重,用于表征样本相似性,再初始化一个类标签矩阵,为有效降低“软类别标签”预测标签F中的混合信号对结果的影响,引入l2,1-范数正则化,同时对F施加非负与列和为1的约束,确保估计的“软标签”满足概率定义和非负性,最后利用参数权衡相似性度量、初始类别标签和l2,1-范数正则化对分类的影响,完成半监督学习建模,取相似性概率的最大值,用于图像类别鉴定,得到分类结果。通过引入l2,1-范数正则化,将混合信号对分类的影响降低,使分类精准度有了提高。此外,还可有效对训练集外的数据进行分类,可拓展性好。
搜索关键词: 一种 图像 监督 分类 方法 系统
【主权项】:
一种多类图像半监督分类方法,其特征在于,包括:对训练集中的有标签图像样本和无标签图像样本进行相似性学习,构造相似近邻图,计算得到权重系数矩阵,并对所述权重系数矩阵进行对称化、归一化处理;根据所述训练集中有标签图像样本的类别标签信息,初始化一个类标签矩阵,其中,所述类标签矩阵中额外添加第(c+1)类用于检测异类/未发现的新颖类,c为有标签图像样本的总类别数;引入l2,1‑范数正则化技术,非负约束,以及列和为1的约束,并基于所述类标签矩阵及对称化、归一化处理后的权重系数矩阵进行非负稀疏标签传播的迭代过程,得到“软类别标签”预测矩阵;根据所述“软类别标签”预测矩阵表征的相似性概率,预测所述训练集中无标签图像样本的准确类别,得到直推式图像分类结果,训练完成半监督分类建模,生成训练模型;利用所述训练模型对测试集中的无标签待分类的图像样本进行类别信息的预测,得到所述测试集中的无标签待分类的图像样本的类别标签,以实现对训练集以外数据的归纳过程。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410708851.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top