[发明专利]用于识别细胞外基质蛋白的集成学习方法有效
申请号: | 201410588610.8 | 申请日: | 2014-10-28 |
公开(公告)号: | CN104331642A | 公开(公告)日: | 2015-02-04 |
发明(设计)人: | 张承进;杨润涛;高瑞;张丽娜 | 申请(专利权)人: | 山东大学 |
主分类号: | G06F19/24 | 分类号: | G06F19/24;G06F19/18 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 张勇 |
地址: | 250061 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了用于识别细胞外基质蛋白的集成学习方法,数据集建立:建立细胞外基质ECM蛋白序列的训练样本集和独立测试样本集;将训练样本集中的蛋白质序列映射成数值特征向量;采用信息增益率—增量特征选择方法挑选出相对有效的特征子集,采用集成学习的方法建立集成分类器模型,以解决数据集不平衡的问题;将独立测试样本集映射成数值特征向量,基于集成分类器模型的预测结果,采用多数表决方法得到测试样本的类别,最终利用所有测试样本的预测结果评价预测系统的性能;本发明开发了用于细胞外基质蛋白识别的网络服务器系统。用户无需理解细胞外基质蛋白识别的具体执行过程,只需输入待预测的蛋白质序列,即可得到预测结果。 | ||
搜索关键词: | 用于 识别 细胞 基质 蛋白 集成 学习方法 | ||
【主权项】:
用于识别细胞外基质蛋白的集成学习方法,其特征是,包括以下步骤:步骤一:数据集建立:建立细胞外基质ECM蛋白序列的训练样本集和独立测试样本集;步骤二:基于序列组成、物理化学属性、进化信息及结构信息,将训练样本集中的蛋白质序列映射成数值特征向量;步骤三:为降低计算复杂度和减少特征的冗余性,采用信息增益率—增量特征选择方法挑选出相对有效的特征子集,以提高评估训练样本集的预测性能;步骤四:采用集成学习的方法建立集成分类器模型,以解决数据集不平衡的问题;步骤五:将独立测试样本集按步骤二的方法映射成数值特征向量,基于集成分类器模型的预测结果,采用多数表决方法得到测试样本的类别,最终利用所有测试样本的预测结果评价预测系统的性能;步骤六:利用用于细胞外基质蛋白识别的网络服务器系统,进行在线识别细胞外基质蛋白。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410588610.8/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用