[发明专利]用于识别细胞外基质蛋白的集成学习方法有效

专利信息
申请号: 201410588610.8 申请日: 2014-10-28
公开(公告)号: CN104331642A 公开(公告)日: 2015-02-04
发明(设计)人: 张承进;杨润涛;高瑞;张丽娜 申请(专利权)人: 山东大学
主分类号: G06F19/24 分类号: G06F19/24;G06F19/18
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 张勇
地址: 250061 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了用于识别细胞外基质蛋白的集成学习方法,数据集建立:建立细胞外基质ECM蛋白序列的训练样本集和独立测试样本集;将训练样本集中的蛋白质序列映射成数值特征向量;采用信息增益率—增量特征选择方法挑选出相对有效的特征子集,采用集成学习的方法建立集成分类器模型,以解决数据集不平衡的问题;将独立测试样本集映射成数值特征向量,基于集成分类器模型的预测结果,采用多数表决方法得到测试样本的类别,最终利用所有测试样本的预测结果评价预测系统的性能;本发明开发了用于细胞外基质蛋白识别的网络服务器系统。用户无需理解细胞外基质蛋白识别的具体执行过程,只需输入待预测的蛋白质序列,即可得到预测结果。
搜索关键词: 用于 识别 细胞 基质 蛋白 集成 学习方法
【主权项】:
用于识别细胞外基质蛋白的集成学习方法,其特征是,包括以下步骤:步骤一:数据集建立:建立细胞外基质ECM蛋白序列的训练样本集和独立测试样本集;步骤二:基于序列组成、物理化学属性、进化信息及结构信息,将训练样本集中的蛋白质序列映射成数值特征向量;步骤三:为降低计算复杂度和减少特征的冗余性,采用信息增益率—增量特征选择方法挑选出相对有效的特征子集,以提高评估训练样本集的预测性能;步骤四:采用集成学习的方法建立集成分类器模型,以解决数据集不平衡的问题;步骤五:将独立测试样本集按步骤二的方法映射成数值特征向量,基于集成分类器模型的预测结果,采用多数表决方法得到测试样本的类别,最终利用所有测试样本的预测结果评价预测系统的性能;步骤六:利用用于细胞外基质蛋白识别的网络服务器系统,进行在线识别细胞外基质蛋白。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410588610.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top