[发明专利]一种基于Spark的海量视频语义标注方法有效

专利信息
申请号: 201410459787.8 申请日: 2014-09-10
公开(公告)号: CN104239501B 公开(公告)日: 2017-04-12
发明(设计)人: 崔铜;葛军 申请(专利权)人: 中国电子科技集团公司第二十八研究所
主分类号: G06F17/30 分类号: G06F17/30;G06T7/90;G06K9/62
代理公司: 江苏圣典律师事务所32237 代理人: 胡建华
地址: 210007 江苏省南京*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了基于Spark的海量视频语义标注方法,其主要是以海量视频在Hadoop大数据集群环境下的弹性分布式存储为基础,采用Spark计算模式进行视频标注。该方法主要包括以下内容基于分形理论的视频分割方法及其在Spark上的实现;基于Spark的视频特征提取方法和基于元学习策略的视觉单词形成方法;基于Spark的视频标注的生成方法。本发明,相对于传统的单机计算、并行计算或分布式计算,计算速度提高百倍以上,具有标注内容信息全、错误率低等优点。
搜索关键词: 一种 基于 spark 海量 视频 语义 标注 方法
【主权项】:
一种基于Spark的海量视频语义标注方法,其特征在于,包括以下步骤:步骤1:将海量视频部署到一组计算节点上,通过Spark集群计算视频帧时间序列的分形维度差值,实现镜头分割,获取关键帧;步骤2:在Spark集群上提取对象的检测样本的颜色矩、边缘以及纹理特征向量,进行元学习策略训练,形成视觉词典;并依据视觉词典对关键视频帧进行预测,产生能表征该关键视频帧的视觉单词;步骤3:通过Tf方法对待测视频的视觉单词进行优先排序,将筛选结果作为该视频的标注;步骤1在Spark集群上实现视频分割,划分海量视频分布至一组计算节点,利用分形方法将视频按时间序列分割为若干镜头,并提取关键帧,具体包括如下步骤:步骤1‑1:转换视频数据格式,将视频二进制数据通过Hadoop自定义输出流转换为Spark集群可读取的byte型数据,并保存到Hadoop分布式系统HDFS上;根据视频总帧数,利用并行分块函数把视频切分为块,一个块代表一个视频帧弹性分布式数据集RDD的数据对象parVideoRDD;调用帧处理程序,将数据对象parVideoRDD中的每一数据块都并行的分配到P个计算节点,从而实现对整个视频的帧数据并行处理;步骤1‑2:采用差分盒法,计算每一视频帧分形维度,通过时间序列的分形维度差值,求出切变镜头和渐变镜头的边界,从而将视频分割为一组镜头;在此计算过程中,通过Spark在各计算节点间的联系SparkContext实现各个计算节点间数据共享,使用映射函数map()完成分配步骤,再使用归一函数reduce()完成更新步骤;步骤1‑3:按时间序列,取每一镜头临界帧作为该镜头的关键视频帧,返回Spark主节点的结果是关键帧号和其场景描述的视频帧的RDD数据,将该视频帧的RDD数据存储为KeyFrameSce.txt文本文件,用于后续步骤调用。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国电子科技集团公司第二十八研究所,未经中国电子科技集团公司第二十八研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410459787.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top