[发明专利]一种无特征提取的紧致SFM三维重建方法有效

专利信息
申请号: 201410139234.4 申请日: 2014-04-08
公开(公告)号: CN103914874B 公开(公告)日: 2017-02-01
发明(设计)人: 陈佩 申请(专利权)人: 中山大学
主分类号: G06T17/00 分类号: G06T17/00;G06T7/00
代理公司: 广州粤高专利商标代理有限公司44102 代理人: 林丽明
地址: 510275 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种无特征提取的紧致SFM三维重建方法,包括输入关于某场景的n幅图像,n≥2;建立与某个相机坐标系相一致的世界坐标系;以三维场景的深度和相机投影矩阵作为变量,构造类似光流估计的目标函数,采用由粗到细的金字塔方法,设计迭代算法对目标函数进行优化,输出表示场景三维信息的深度和代表相机相对位姿信息的相机投影矩阵;根据表示场景三维信息的深度,实现紧致的射影、相似或者欧几里德重建。本发明能够一步完成紧致SFM三维重建。由于通过一步优化实现紧致三维信息的估计,以目标函数值作为指标,能够得到最优解,至少是局部最优解,比现有方法有很大改进,已初步得到实验验证。
搜索关键词: 一种 特征 提取 sfm 三维重建 方法
【主权项】:
一种无特征提取的紧致SFM三维重建方法,其特征在于,包括以下步骤:S1.输入关于某场景的n幅图像,n≥2;S2.建立与某个相机坐标系相一致的世界坐标系,设世界坐标系与第一相机的坐标系相一致,即世界坐标系的原点、x轴和y轴与第一相机的相机中心、第一相机成像平面的x轴和y轴重合,其z轴垂直指向第一相机的成像平面;S3.以三维场景的深度和相机投影矩阵作为变量,所述三维场景的深度是指第1幅图像像素点对应的三维空间点具有的深度q;所述相机投影矩阵是指其它(n‑1)幅图像的3×4矩阵Pi,2≤i≤n;S4.构造类似光流估计的目标函数,所述目标函数是连续域上的变分目标函数或其离散形式的目标函数;S5.采用由粗到细的金字塔方法,在连续域或者离散域上设计迭代算法对目标函数进行优化,输出表示场景三维信息的深度和代表相机相对位姿信息的相机投影矩阵;S6.根据表示场景三维信息的深度,实现紧致的射影、相似或者欧几里德重建。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410139234.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top