[发明专利]一种用于预测软件缺陷的方法和系统无效

专利信息
申请号: 201410056820.2 申请日: 2014-02-19
公开(公告)号: CN103810102A 公开(公告)日: 2014-05-21
发明(设计)人: 胡昌振;薛静锋;王男帅;单纯;胡晶晶 申请(专利权)人: 北京理工大学
主分类号: G06F11/36 分类号: G06F11/36;G06F19/00
代理公司: 北京理工大学专利中心 11120 代理人: 仇蕾安
地址: 100081 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种用于预测软件缺陷的方法和系统,用以解决现有软件缺陷预测精度不高,SVM参数选择难的问题。该方法包括以下步骤:步骤一、获取训练数据集,并建立基于SVM分类器的软件缺陷预测模型;步骤二、利用遗传算法同时寻找训练数据集的最优度量元属性子集和SVM分类器的参数C、σ的最优取值;其中,最优度量元属性子集是指能够独立代表训练数据集相应模块的属性;参数C、σ的最优取值是指能够确定SVM分类器最优分类超平面函数的那组参数C、σ的值;步骤三、根据得到的最优度量元属性子集以及SVM分类器的参数C、σ的最优取值,得到基于SVM分类器的最佳软件缺陷预测模型;步骤四、根据得到的最佳软件缺陷预测模型对待测软件进行缺陷预测。
搜索关键词: 一种 用于 预测 软件 缺陷 方法 系统
【主权项】:
一种用于预测软件缺陷的方法,其特征在于,包括以下步骤: 步骤一、获取训练数据集,并建立基于SVM分类器的软件缺陷预测模型; 步骤二、利用遗传算法同时寻找训练数据集的最优度量元属性子集和SVM分类器的参数C、σ的最优取值;其中,最优度量元属性子集是指能够独立代表训练数据集相应模块的属性;参数C、σ的最优取值是指能够确定SVM分类器最优分类超平面函数的那组参数C、σ的值; 步骤三、根据得到的最优度量元属性子集以及SVM分类器的参数C、σ的最优取值,得到基于SVM分类器的最佳软件缺陷预测模型; 步骤四、根据得到的最佳软件缺陷预测模型对待测软件进行缺陷预测。 
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410056820.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top