[发明专利]基于半监督稀疏鉴别嵌入的高光谱遥感影像分类方法有效
申请号: | 201310635210.3 | 申请日: | 2013-11-29 |
公开(公告)号: | CN103593676A | 公开(公告)日: | 2014-02-19 |
发明(设计)人: | 黄鸿;曲焕鹏 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/66 |
代理公司: | 重庆博凯知识产权代理有限公司 50212 | 代理人: | 钟继莲;张先芸 |
地址: | 400044 *** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于半监督稀疏鉴别嵌入的高光谱遥感影像分类方法,其采用半监督稀疏鉴别嵌入算法对高光谱遥感影像进行维数简约,结合了近邻流形结构及稀疏性的优点,不仅保留样本间的稀疏重构关系,而且利用稀疏表示的自然判别能力,无需人为地选择近邻参数值,一定程度上缓解了近邻参数选择的困难,同时利用少量有标记训练样本以及部分无标记训练样本来发现蕴藏在高维数据的内在属性以及低维流形结构,能够提高对高光谱遥感影像中地物类别的分类精度;同时,本发明方法通过有区别的对待已标注数据与无标注数据,最大程度的增加相同地物类别的数据点之间的可聚性,从而在另一方面帮助提高对高光谱遥感影像中地物类别的分类精度。 | ||
搜索关键词: | 基于 监督 稀疏 鉴别 嵌入 光谱 遥感 影像 分类 方法 | ||
【主权项】:
基于半监督稀疏鉴别嵌入的高光谱遥感影像分类方法,其特征在于,包括如下步骤:1)读入高光谱遥感影像数据;2)将高光谱遥感影像中每一个数据点根据其光谱波段生成一个光谱数据向量,从而由各个数据点的光谱数据向量组成整幅高光谱遥感影像的光谱数据矩阵;3)从高光谱遥感影像中选取部分数据点作为样本数据点,由各个样本数据点的光谱数据向量组成样本数据矩阵,并根据先验知识从样本数据矩阵中选取部分样本数据点的光谱数据向量进行已知地物类别的标注,生成相应的样本类别标签;4)将样本数据矩阵中的每个光谱数据向量进行稀疏表示,求得各个光谱数据向量的最优稀疏系数向量,从而得到样本数据矩阵对应的稀疏系数矩阵;5)借助样本数据矩阵中标注有向量类别标签的样本数据点的光谱数据向量,构建用于度量样本数据矩阵中光谱数据向量之间相似性的近邻图;6)根据近邻图计算样本数据矩阵对应的近邻权重矩阵;7)根据目标优化函数,利用样本数据矩阵对应的稀疏系数矩阵和近邻权重矩阵计算高光谱遥感影像的投影矩阵;8)通过投影矩阵将高光谱遥感影像投影到低维嵌入空间,得到高光谱遥感影像的嵌入特征矩阵;9)以嵌入特征矩阵作为高光谱遥感影像中地物类别的分类识别特征,利用K‑近邻分类算法对高光谱遥感影像进行地物类别的分类,得出地物类别的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310635210.3/,转载请声明来源钻瓜专利网。