[发明专利]最小二乘的农药生产废液焚烧炉炉温最佳化系统及方法有效
申请号: | 201310437970.3 | 申请日: | 2013-09-22 |
公开(公告)号: | CN103488208A | 公开(公告)日: | 2014-01-01 |
发明(设计)人: | 刘兴高;李见会;张明明;孙优贤 | 申请(专利权)人: | 浙江大学 |
主分类号: | G05D23/00 | 分类号: | G05D23/00;G05B13/04 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 周烽 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种最小二乘的农药生产废液焚烧炉炉温最佳化系统及方法。该方法对原有的模糊系统进行改进,采用最小二乘支持向量机作为模糊系统的局部方程,通过模糊化方法抑制噪声对优化结果的影响。在本发明中,训练样本经标准化处理模块处理,作为模糊系统模块的输入;模糊系统模块中得到的炉温预报值和使炉温最佳的操作变量值与结果显示模块相连,用于结果将传给DCS系统;模型更新模块,用于按设定的采样时间间隔,采集现场智能仪表信号。本发明实现了对炉温的准确控制、实时优化以及抑制了噪声对系统优化结果的影响。 | ||
搜索关键词: | 最小 农药 生产 废液 焚烧 炉温 最佳 系统 方法 | ||
【主权项】:
1.一种最小二乘的农药生产废液焚烧炉炉温最佳化系统,包括焚烧炉、智能仪表、DCS系统、数据接口以及上位机,所述的DCS系统包括控制站和数据库;所述现场智能仪表与DCS系统连接,所述DCS系统与上位机连接,其特征在于:所述的上位机包括:标准化处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:计算均值:TX ‾ = 1 N Σ i = 1 N TX i - - - ( 1 ) ]]> 计算方差:σ x 2 = 1 N - 1 Σ i = 1 N ( TX i - TX ‾ ) - - - ( 2 ) ]]> 标准化:X = TX - TX ‾ σ x - - - ( 3 ) ]]> 其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、炉温和使炉温最佳化的操作变量的数据,N为训练样本数,
为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2x表示训练样本的方差。模糊系统模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:μ ik = ( Σ j = 1 c * ( | | X i - v k | | | | X i - v j | | ) 2 n - 1 ) - 1 - - - ( 4 ) ]]> 式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2:||·||为范数表达式。使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:Φik(Xi,μik)=[1 func(μik) Xi] (5)其中func(μik)为隶属度值μik的变形函数,一般取
exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。加权支持向量机作为模糊系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:min R ( w , ξ ) = 1 2 w T w + 1 2 γ Σ i = 1 N ξ i 2 - - - ( 6 ) ]]>
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,
是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi,i=1,…,N是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,γ是最小二乘支持向量机的惩罚因子,上标T表示矩阵的转置,μik表示标准化后的第i个训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:y ^ ik = Σ m = 1 N α m × K 〈 Φ im ( X m , μ mk ) , Φ ik ( X i , μ ik ) 〉 + b - - - ( 9 ) ]]> 其中,
为第k个误差反向传播模糊系统输出层的预测输出,K<·>是加权支持向量机的核函数,这里K<·>取线性核函数;μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。由反模糊方法中的重心法得到最后的模糊系统的输出:y ^ i = Σ k = 1 c * μ ik y ^ ik Σ k = 1 c * μ ik - - - ( 10 ) ]]>
即为对应于第i个标准化后的训练样本Xi的炉温预报值和使炉温最佳的操作变量值。所述的上位机还包括:模型更新模块,用于按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测炉温与系统预报值比较,如果相对误差大于10%或炉温超出生产正常上下限范围,则将DCS数据库中生产正常时的使炉温最佳的新数据加入训练样本数据,更新软测量模型。结果显示模块,用于将炉温预报值和使炉温最佳的操作变量值传给DCS系统,在DCS的控制站显示,并通过DCS系统和现场总线传递到现场操作站进行显示;同时,DCS系统将所得到的使炉温最佳的操作变量值作为新的操作变量设定值,自动执行炉温最佳化操作。信号采集模块,用于依照设定的每次采样的时间间隔,从数据库中采集数据。所述的关键变量包括进入焚烧炉的废液流量、进入焚烧炉的空气流量和进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310437970.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种H型钢翼缘板矫正机
- 下一篇:稻谷集中清理除尘系统