[发明专利]一种基于隐马尔科夫模型的车辆异常行为检测方法有效
申请号: | 201310127999.1 | 申请日: | 2013-04-15 |
公开(公告)号: | CN103235933A | 公开(公告)日: | 2013-08-07 |
发明(设计)人: | 林国余;蔡英凤;王海;张为公 | 申请(专利权)人: | 东南大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 苏州广正知识产权代理有限公司 32234 | 代理人: | 刘述生 |
地址: | 215000 江苏省*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于隐马尔科夫模型的车辆异常行为检测方法,包括以下步骤:a、采集视频图像,利用跨于道路上方或立于道路两侧的摄像头进行视频图像采集;b、获得轨迹,通过采集到的视频图像对场景内的车辆目标进行提取和跟踪以获得车辆的轨迹;c、离线训练环节,将上述轨迹的生长方向特征进行聚类,并通过误差筛查处理得到典型轨迹群,对相同生长方向的轨迹进行隐马尔科夫模型的学习,获得场景内的常态行为模式;d、实时检测环节,提取新轨迹,并计算新轨迹与常态行为模式的最大匹配概率值,若得到的最大匹配概率值小于所设定的阈值,则车辆发生异常行为。本发明能够对场景内的车辆异常行为进行有效识别,为交通行为理解及智能交通管理提供了技术手段。 | ||
搜索关键词: | 一种 基于 隐马尔科夫 模型 车辆 异常 行为 检测 方法 | ||
【主权项】:
一种基于隐马尔科夫模型的车辆异常行为检测方法,其特征在于,包括以下步骤:a、采集视频图像,利用跨于道路上方或立于道路两侧的摄像头进行视频图像采集;b、获得轨迹,通过采集到的视频图像对场景内的车辆目标进行提取和跟踪以获得车辆的轨迹;c、离线训练环节,将上述轨迹的生长方向特征进行聚类,并通过误差筛查处理得到典型轨迹群,对相同生长方向的轨迹进行隐马尔科夫模型的学习,获得场景内的常态行为模式;d、实时检测环节,提取新轨迹,并计算新轨迹与常态行为模式的最大匹配概率值,若得到的最大匹配概率值小于所设定的阈值,则车辆发生异常行为。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310127999.1/,转载请声明来源钻瓜专利网。