[发明专利]一种基于改进SIFT算法的高效图像匹配方法无效
申请号: | 201210169119.2 | 申请日: | 2012-05-28 |
公开(公告)号: | CN102722731A | 公开(公告)日: | 2012-10-10 |
发明(设计)人: | 王艳;孙永荣;张翼;刘晓俊;王潇潇;熊智 | 申请(专利权)人: | 南京航空航天大学 |
主分类号: | G06K9/64 | 分类号: | G06K9/64 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 朱小兵 |
地址: | 210016 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于改进SIFT算法的高效图像匹配方法。本发明包括下列步骤:(1)利用SIFT算子对输入的参考图像和待匹配图像进行特征点提取;(2)结合Harris算子对SIFT提取的特征点进行优化以筛选具有代表性的角点作为最终的特征点;(3)对SIFT特征描述符进行降维处理,获取参考图像和待匹配图像的64维特征向量描述符;(4)利用最近邻/次近邻(NN/SCN)算法对参考图像和待匹配图像进行初始匹配,并采用随机采样一致性(RANSAC)算法剔除其中的错误匹配,从而实现图像的精匹配。本发明在图像匹配时,通过选择更能代表或体现图像特征的点进行匹配,在保证匹配精度的同时提高了SIFT匹配的实时性。 | ||
搜索关键词: | 一种 基于 改进 sift 算法 高效 图像 匹配 方法 | ||
【主权项】:
一种基于改进SIFT算法的高效图像匹配方法,其特征在于,包括如下步骤:步骤(1),利用SIFT算子对输入的参考图像和待匹配图像进行特征点提取;步骤(2),结合Harris算子对步骤(1)提取的参考图像和待匹配图像的特征点进行优化,筛选出具有代表性的角点作为最终的SIFT特征点;步骤(3),对步骤(2)筛选出的SIFT特征点的特征描述符进行降维处理,获取参考图像和待匹配图像的64维特征向量描述符;步骤(4),利用最近邻/次近邻算法对参考图像和待匹配图像进行初始匹配,并采用基于极线约束的RANSAC算法剔除其中的错误匹配,实现图像的精匹配。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210169119.2/,转载请声明来源钻瓜专利网。