[发明专利]一种基于DSmT的图像目标多特征融合识别方法无效
申请号: | 201110178416.9 | 申请日: | 2011-06-29 |
公开(公告)号: | CN102222240A | 公开(公告)日: | 2011-10-19 |
发明(设计)人: | 李新德;杨伟东 | 申请(专利权)人: | 东南大学 |
主分类号: | G06K9/66 | 分类号: | G06K9/66;G06N3/08 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 柏尚春 |
地址: | 210096*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于DSmT的图像目标多特征融合识别方法,其首先,我们将提取图像目标的矩和轮廓等多个特征量作为证据源,以获得足够多的有用互补信息;接着,我们通过由广泛应用于分类的PNN神经网络来构造目标识别率矩阵;然后根据PNN网络的初识别结果和类似统计学中极大似然思想的规则,用目标识别率矩阵对基本信度进行赋值;最后用DSmT组合规则进行决策级数据融合,完成对三维目标的识别。本发明提供的基于DSmT的图像目标多特征融合识别方法,能够解决在三维目标识别中由于信息获取的不精确、不确定、不完全和高度冲突等导致目标识别率不高的问题。 | ||
搜索关键词: | 一种 基于 dsmt 图像 目标 特征 融合 识别 方法 | ||
【主权项】:
一种基于DSmT的图像目标多特征融合识别方法,其特征在于:该方法包括如下步骤:(1)提取目标图像的的矩特征量和轮廓特征量,其中矩特征量包括Hu矩、归一化转动惯量和仿射不变矩,轮廓特征量包括轮廓离散化参数和奇异值;(2)依据每个特征量构建PNN神经网络并对其进行训练,得到各自的目标识别率矩阵;(3)根据PNN网络的初识别结果和类似统计学中极大似然思想的规则,用目标识别率矩阵对基本信度进行赋值;(4)用DSmT组合规则进行决策级数据融合,完成对三维目标的识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201110178416.9/,转载请声明来源钻瓜专利网。
- 上一篇:一种改进的纸机烘缸虹吸组件
- 下一篇:一种晾衣架
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序