[发明专利]基于支持向量多元分类的下肢动作模式的识别方法无效

专利信息
申请号: 200910099598.3 申请日: 2009-06-12
公开(公告)号: CN101587546A 公开(公告)日: 2009-11-25
发明(设计)人: 吴剑锋;吴群;曾志强;孙守迁 申请(专利权)人: 浙江大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 杭州裕阳专利事务所(普通合伙) 代理人: 江助菊
地址: 310027浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于支持向量多元分类的下肢动作模式的识别方法,该方法的主要步骤为:首先是采集肌电信号,接着对采集的信号进行预处理,其后进行信号的时域及频域特征提取,提取时利用一个小的移动窗口对信号进行采样,同时将计算分散到小的时间段内进行;肌电信号特征向量空间建立时在时域上选择肌电均方根值、绝对值平均以及方差三个分段统计值为特征值,在频域上采用Mallat分解方法获取频域特征值,接着对信号进行PCA主元分析,随后依据足底压力信号的压力值将压力信号分为支撑目标集与摆动目标集,随后简化SVM多元分类器对目标集数据进行分类而后输出识别结果。本方法克服传统肌电信号谱分析的不足,为下肢动作模式的识别提供鲁棒性好且易于识别的特征向量。
搜索关键词: 基于 支持 向量 多元 分类 下肢 动作 模式 识别 方法
【主权项】:
1、一种基于支持向量多元分类的下肢动作模式的识别方法,该方法的主要步骤为:首先是采集肌电信号,接着对采集的信号进行预处理,其后进行信号的时域及频域特征提取,接着对信号进行PCA主元分析,分析后依据足底压力信号的压力值将压力信号分为支撑目标集与摆动目标集,随后简化SVM多元分类器对目标集数据进行分类而后输出识别结果,其特征在于:对预处理后的信号进行时域及频域特征提取时利用一个小的移动窗口对信号进行采样,同时将计算分散到小的时间段内进行;肌电信号特征向量空间建立时在时域上选择肌电均方根值、绝对值平均以及方差三个分段统计值为特征值,在频域上采用Mallat分解方法获取频域特征值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/200910099598.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top