[发明专利]一种决策级文本自动分类融合方法无效

专利信息
申请号: 200910087844.3 申请日: 2009-06-24
公开(公告)号: CN101604322A 公开(公告)日: 2009-12-16
发明(设计)人: 张晓丹;牛振东;张正施;曹玉鹃;徐小梅 申请(专利权)人: 北京理工大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 北京理工大学专利中心 代理人: 张利萍
地址: 100081北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种决策级文本自动分类融合方法,属于数据挖掘领域,适用于数字图书馆、网络内容监管、垃圾邮件过滤等。本发明以信息融合为理论基础,以分类精度高的文本自动分类算法为研究对象,建立了决策级文本自动分类融合模型,即采用多层融合结构,串、并联混和的形式进行文本自动分类处理,得到准确率更高的分类结果。
搜索关键词: 一种 决策 文本 自动 分类 融合 方法
【主权项】:
1.一种决策级文本自动分类融合方法,其特征在于以信息融合为理论基础,以分类精度高的文本自动分类算法为研究对象,建立了决策级文本自动分类融合模型,即采用多层融合结构,串、并联混和的形式进行文本自动分类处理,得到准确率更高的分类结果;其具体实现步骤如下:第1步:对待分文档进行分词、特征提取、权重计算等预处理;第2步:在第1步的基础上,将预处理后的结果分别发送到SVM,KNN和贝叶斯分类器中;第3步:在第2步的基础上,SVM分类器进行分类,并将分类结果发送到决策级融合中心以及KNN分类器中;第4步:在第2步的基础上,KNN分类器进行分类,得到KNN分类器的分类结果;第5步:在第3步和第4步的基础上,将KNN分类器的分类结果与SVM的分类结果进行比较,即:将KNN得到类别概率与SVM分类器的分类结果进行比较,概率最大者为该分类器的最终分类结果;然后将分类结果发送到决策级融合中心以及贝叶斯分类器中;第6步:在第2步的基础上,贝叶斯分类器进行分类,得到贝叶斯分类器的分类结果;第7步:在第5步和第6步的基础上,将贝叶斯分类器的分类结果与KNN的分类结果相比较,即:将贝叶斯分类器得到的类别概率与KNN分类器的分类结果进行比较,概率最大者为该分类器的最终分类结果;将分类结果发送到决策级分类融合中心;第8步:在第3步、第5步和第7步的基础上,在决策级融合中心采用投票算法对特征级得到的分类结果进行投票,得到最终的分类决策结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/200910087844.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top