[发明专利]一种基于智能量测终端的反窃电分析方法有效
申请号: | 202310286147.0 | 申请日: | 2023-03-23 |
公开(公告)号: | CN116008714B | 公开(公告)日: | 2023-06-30 |
发明(设计)人: | 曹乾磊;王磊;梁浩;黄晓娅;王金龙;李晓杰;杨圣昆;胡志远 | 申请(专利权)人: | 青岛鼎信通讯股份有限公司 |
主分类号: | G01R31/00 | 分类号: | G01R31/00;G01R22/00;G06Q50/06;G06F17/16 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 266000 山东省青岛市高新*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 智能 终端 反窃电 分析 方法 | ||
本发明涉及配电网自动化系统领域,公开了一种基于智能量测终端的反窃电分析方法,包括以下步骤:量测终端采集台区用户表与台区考核总表日冻结电量数据;对采集数据进行均值滤波处理;用总表数据减去户表数据加和获得线损值曲线;奇异值分解户表数据;根据户表数据与线损值曲线建立低压台区线损回归模型,从而得到户表估计系数;计算线损贡献度并结合估计系数给出疑似窃电用户清单。本发明能够在数据点数少于用户数的情况下进行计算并改善了由于用户间相关性导致判断失准的问题,获得相对稳定的最小二乘解析解,保证了窃电用户判断结果的准确性。同时,本发明仅需获取全台区用户用电数据与台区总表数据,无需添加额外设备,易于实现。
技术领域
本发明涉及配电网自动化系统领域,涉及一种基于智能量测终端的反窃电分析方法。
背景技术
电力能源已成为当今社会生产生活中的必需品,然而在发电、输电和配电过程中,经常会发生电能损耗,其中,日益增多的窃电现象是导致电能损耗的一个重要原因,从而导致难以估计的经济损失。近年来,坚强智能电网和泛在电力物联网的建设与发展使得电压、电流、电量等海量用电数据得以采集并存储,因此,基于大数据分析技术的窃电检测方法受到日益广泛的关注。
在当前的大数据分析技术中,最常见的手段是根据能量守恒定律建立台区线性回归模型,然后根据最小二乘方法估计出用户系数,线性回归模型中窃电用户的估计系数远离零值而正常用户的系数靠近零值,进而分析出疑似窃电行为。然而,该方法在实际应用中常会面临两方面问题:①最小二乘法需要数据点数大于等于用户数,否则无法进行计算,而低压台区可能存在多达几百用户,导致需要更多的数据点数,从而导致计算周期过长;②低压台区用户的日冻结电量具有不同程度的相关性,容易导致最小二乘法的解不稳定,从而影响最终判断结果。
发明内容
本发明针对上述问题,克服现有技术的不足,提出一种基于智能量测终端(南方电网科学研究院有限责任公司)的反窃电分析方法,对户表数据矩阵进行奇异值分解,能够在数据点数少于用户数的情况下进行计算并改善了由于用户间相关性导致判断失准的问题,获得相对稳定的最小二乘解析解。同时,本发明仅需获取全台区用户用电数据与台区总表数据,无需添加额外设备。
为了实现上述发明目的,本发明采取如下技术方案:
一种基于智能量测终端的反窃电分析方法,包括以下步骤:
步骤1,智能量测终端采集低压台区用户表日冻结电量数据与台区考核总表日冻结电量数据;
步骤2,对采集到的电量数据进行均值滤波处理,称均值滤波处理后的数据为总表数据和户表数据;
用总表数据减去户表数据的加和,获得线损值曲线;
步骤3,对户表数据进行奇异值分解;具体过程为:
A1,将户表数据整理为矩阵形式X∈Rn×m;其中n为滤波后的日冻结电量数据点数,m为台区用户表数,R表示实数;
A2,计算XTX∈Rm×m,求特征向量和特征值;
求得的特征值按照从大到小顺序排列并相应排列特征值对应的特征向量,取排列后的前min(m,n)个特征值与特征向量;
取得的特征向量组成右矩阵V∈Rm×m满足VVT=E;取得的特征值的平方根构成奇异值对角阵Σ∈Rm×m;
A3,计算XXT∈Rn×n,求特征向量和特征值;
求得的特征值按照从大到小顺序排列并相应排列特征值对应的特征向量,取排列后的前min(m,n)个特征值与特征向量;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛鼎信通讯股份有限公司,未经青岛鼎信通讯股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202310286147.0/2.html,转载请声明来源钻瓜专利网。