[发明专利]一种电能表故障自诊断方法在审

专利信息
申请号: 202310185948.8 申请日: 2023-03-01
公开(公告)号: CN116027253A 公开(公告)日: 2023-04-28
发明(设计)人: 董军;赵颖;陈健辉 申请(专利权)人: 广东电网有限责任公司广州供电局
主分类号: G01R35/04 分类号: G01R35/04
代理公司: 广州名扬高玥专利代理事务所(普通合伙) 44738 代理人: 郭琳
地址: 510000 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 电能表 故障 诊断 方法
【说明书】:

本申请提供一种电能表故障自诊断方法,包括:电能表检测温度、显示、接触不良、短路、不稳定等异常;电能表记录异常内容,判断故障类型;预测未来可能的异常,具体包括:针对一种以上的异常,并行的进行检查;判断异常严重度,进行记录;电能表异常记录显示;根据异常显示提示工人检查电表自身无法判断的部件;再次提示工人进一步检测下一个部件,多次进行交互显示。

技术领域

发明涉及信息技术领域,尤其涉及一种电能表故障自诊断方法。

背景技术

在电网系统中,电能表故障是一个经常发生的问题,普通的故障需要电网工人进行各种方案的尝试和探索,但是有一些故障比较严重,有一些小问题没有特别严重,有一些需要马上有人处理,有一些小问题可以通过系统自动处理。很多故障可能不是一时突然产生,而是可能前期有一些征兆,这些征兆可能还不足以让电能表损坏,但如果经常进行自动诊断和记录,就能够更好的为重大的故障提供维修数据支持。如果进行电能表的自动诊断,尤其是并行地诊断多种故障类型,多次自诊断后,是否能够在人工检测时,与人工进行数据的交互,以便更快的获得有价值的信息,更好的反映电能表自动诊断的内容,这些是当前电能表都还无法解决的问题。

发明内容

本发明提供了一种电能表故障自诊断方法,主要包括:

电能表检测温度、显示、接触不良、短路、不稳定等异常;电能表记录异常内容,判断故障类型;预测未来可能的异常,具体包括:针对一种以上的异常,并行的进行检查;判断异常严重度,进行记录;电能表异常记录显示;根据异常显示提示工人检查电表自身无法判断的部件;再次提示工人进一步检测下一个部件,多次进行交互显示。

进一步可选地,所述电能表检测温度、显示、接触不良、短路、不稳定等异常包括:

第一步,获取预设的电能表内的历史故障数据库和故障预测结果集合;由历史故障数据库与故障预测结果集合进行关联,读取最小支持度;所述历史故障数据库为电能表历史故障信息组成的信息集合,故障预测结果集合为根据历史故障数据库运用神经网络预测,所得到的电能表故障预测信息集合;为所述最小支持度为用户或专家定义的衡量支持度的一个阈值,表示项目集在统计意义上的最低重要性;由Apriori算法据最小支持度,第一阶段先从历史故障数据库与故障预测结果集合中找出所有的高频相关项目组,第二阶段再由这些高频相关项目组中产生关联规则;根据历史故障数据库中的关联规则构建电能表故障诊断模型,模型中包含电能表故障指数与电能表实时运行数据的线性关系;第二步,检测电能表的实时运行情况,获取{温度、显示、接触不良、短路、不稳定}实时运行数据,将所述实时运行数据输入预设的电能表故障诊断模型,生成电能表故障指数。

进一步可选地,所述电能表记录异常内容,判断故障类型包括:

基于电能表的温度、显示、接触不良、短路、不稳定数据,以及故障智能电能表故障退运数据进行分类;用电能表的温度、显示、接触不良、短路、不稳定数据,以及故障智能电能表故障退运数据作为特征的输入,根据电能表故障类型的输出,作为标注值,训练神经网络学习模型;根据神经网络学习模型的最终输出结果,得出电能表故障类型的判别报告;所述神经网络学习模型的训练过程如下:输入电能表的温度、显示、接触不良、短路、不稳定数据,以及故障智能电能表故障退运数据;把所述电能表的温度、显示、接触不良、短路、不稳定数据,以及故障智能电能表故障退运数据输入信息层;然后从电能表服务器后台系统记录,导入对应的电能表故障类型;在输出的电能表故障类型中,分类为“电池欠压”,“电源故障”,“计量失准”,“电量异常”,“时钟错误”,“通信故障”,“显示故障”,“跳/合闸失败”,以及“外观故障”,在对应输入集合后标注对应预设的阈值;将已经标注的集合作为输出数据,并分类存入模型记忆库,作为后续输入信息的对照组;若输入与对应标注的集合的模型记忆库对比超过预设的阈值相同的信息,将其作为相应的输出数据,作为神经网络学习模型的最终输出结果。

进一步可选地,所述预测未来可能的异常包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东电网有限责任公司广州供电局,未经广东电网有限责任公司广州供电局许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202310185948.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top