[发明专利]一种基于模态共有特征分离的软测量建模方法在审

专利信息
申请号: 202210498716.3 申请日: 2022-05-09
公开(公告)号: CN114841000A 公开(公告)日: 2022-08-02
发明(设计)人: 沈冰冰;姚乐;葛志强 申请(专利权)人: 杭州师范大学
主分类号: G06F30/20 分类号: G06F30/20;G06K9/62
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 邬赵丹
地址: 311121 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 共有 特征 分离 测量 建模 方法
【说明书】:

发明涉及一种基于模态共有特征分离的软测量建模方法。该方法充分考虑工业过程的数据特性,通过β变分自编码器和梯度反转方法,对多模态工业过程进行模态共有特征的提取,同时利用输入生成模态独有的系数,将模态独有系统与模态共有特征相乘,用于多模态过程的软测量建模。将模态基础特征与模态独有参数相结合,用于软测量的回归建模,对关键质量变量进行估计和预报。与现有的其他方法相比,本发明可以有效地提取工业数据中多模态和非线性特征,对待测多模态输入数据进行自动的模态划分,从而利用模态共有特性和独有特性进行建模,大幅度提升软测量模型对多模态工业过程的预测精度。

技术领域

本发明属于工业过程控制技术领域,涉及一种基于模态共有特征分离的软测量建模方法。

背景技术

在工业过程中,用于帮助过程监测、故障诊断以及质量预报的关键变量被称为质量变量,而在过程中易于采集的传感器数据被称为过程变量。但质量变量由于一些客观条件的限制,直接获取的难度往往较大,例如测量的设施异常昂贵、测量的环境非常困难、实验室分析延迟较大等。针对此类难于直接观测的关键质量变量,一般的,可采用软测量建模的方法,即构建易于测量的过程变量与难于观测的质量变量之间的数学关系,进而进行推断和估计。

此外,在生产过程中,随着原料组分、生产需求、生产环境、生产工艺等因素的变化,同一生产线的状态也会随之发生物理或化学性质的变化,这也被称为多模态过程。为了解决多模态问题,现有的方法一般可分为线性算法、非线性算法、自适应学习算法。线性算法是建立多个子空间,从而提出变量、单元的分层预测。此类模型需要结合具体的多模态过程专家知识,以建立精确的多模态模型,不具备普适性;而非线性的方法往往是将多模态也视为一种高维的非线性因素,从而进行拟合。这需要引入更深层网络结构或增加网络节点进行非线性拟合,计算规模大,时间成本高,很难适用于实时性要求高的在线监测过程;自适应的学习方法能够不断实时动态更新模型,从而忽略过程的多模态特性,该方法对于一些简单的多模态过程建模效果较好,而处理复杂的非线性多模态过程,则会出现严重的信息丢失问题。

综上,现有的一些多模态问题解决方案,都没有充分考虑到工业过程的数据特性。对于工业过程而言,由于数据是源自于同一个反应过程,所以不同的模态数据之间有一定的共性,这些共性往往是过程的基础特性,因此,多模态建模可以从模态共有特征出发,设计一个轻量的深度学习模型提取模态之间的基础特征,抽离不同模态的独有特征,建立起多模态过程变量和质量变量之间的关系,能够有效构建高预测精度的软测量模型。

发明内容

本发明的目的就是提供一种基于模态共有特征分离的软测量建模方法。

本发明具体包括以下步骤:

步骤一、收集多模态工业过程建模所需的有标签数据集,随机采样,将数据分为训练集输入样本Xtrain∈R1×n和测试集输入样本Xtest∈R1×n,训练集输入样本对应输出样本集Ytrain∈R1×1,测试集输入样本对应输出样本集Ytest∈R1×1,其中n代表变量维度;

步骤二、对步骤一中所述训练集Xtrain进行模态划分,为每个样本标注一个对应的模态类别m;

步骤三、基于开源深度学习平台Tensorflow搭建基于模态共有特征分离与自加权变分自编码器网络MSCS-SW-VAE模型;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州师范大学,未经杭州师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210498716.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top