[发明专利]设定信息关联参考平台及方法有效

专利信息
申请号: 202210126113.0 申请日: 2022-02-10
公开(公告)号: CN114459575B 公开(公告)日: 2023-05-02
发明(设计)人: 佘以道 申请(专利权)人: 山东企赢盈网络科技有限公司
主分类号: G01F25/10 分类号: G01F25/10;G01F1/002;G06N3/04;G06N3/08
代理公司: 北京华际知识产权代理有限公司 11676 代理人: 袁瑞红
地址: 250101 山东省济南市高*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 设定 信息 关联 参考 平台 方法
【权利要求书】:

1.一种设定信息关联参考平台,其特征在于,所述平台包括:

沿岸检测部件,包括沿着同一河流设置的多个流量检测设备,所述多个流量检测设备用于分别测量所述河流边沿多个位置分别对应的多个现场流量数据;

时间供应部件,与所述沿岸检测部件连接,用于每隔预设时间长度向所述沿岸检测部件发送一次检测触发命令;

所述多个流量检测设备在每接收到一次检测触发命令后,同步执行对所述河流边沿多个位置分别对应的多个现场流量数据的实时测量,以获得当前时刻对应的多个现场流量数据并作为当前时刻对应的沿岸流量数据;

前端构建设备,由第一计算机控制芯片来实现,分别与所述沿岸检测部件和所述时间供应部件连接,用于将某一流量检测设备测量的某一时刻对应的现场流量数据作为深度前馈神经网络的单份输出信号,将所述某一流量检测设备周围设定总数的各个流量检测设备分别测量的所述某一时刻对应的各个现场流量数据作为深度前馈神经网络的各份输入信号,以构建针对所述某一流量检测设备的深度前馈神经网络;

后端构建设备,由第二计算机控制芯片来实现,与所述前端构建设备连接,用于将每一历史时刻下某一流量检测设备以及其周围设定总数的各个流量检测设备分别对应的多个现场流量数据作为针对所述某一流量检测设备的深度前馈神经网络的输入信号和/或输出信号,执行对针对所述某一流量检测设备的深度前馈神经网络的单次学习动作,以获得经过多次学习后的深度前馈神经网络并作为人工预测模型输出;

流量预测设备,与所述后端构建设备连接,用于在某一流量检测设备发生故障时,将所述某一流量检测设备周围设定总数的各个流量检测设备分别测量的所述某一时刻对应的各个现场流量数据作为所述某一流量检测设备对应的人工预测模型的各份输入信号,并运行所述人工预测模型以将其输出信号作为所述某一流量检测设备在所述某一时刻的预测流量数据;

其中,在所述前端构建设备中,所述某一流量检测设备所在位置的垂直落差越大,选择的设定总数的数值越大。

2.如权利要求1所述的设定信息关联参考平台,其特征在于,所述平台还包括:

数据上报设备,通过无线网络与所述河流的监控服务器连接,用于将所述某一流量检测设备在所述某一时刻的预测流量数据无线发送给所述河流的监控服务器。

3.如权利要求1所述的设定信息关联参考平台,其特征在于,所述平台还包括:

故障判断设备,包括多个故障判断单元,用于分别与所述多个流量检测设备连接,每一故障判断单元用于判断其连接的流量检测设备的输出数据是否偏差超过预设偏差阈值以判断所述流量检测设备是否存在故障。

4.如权利要求1-3任一所述的设定信息关联参考平台,其特征在于:

将每一历史时刻下某一流量检测设备以及其周围设定总数的各个流量检测设备分别对应的多个现场流量数据作为针对所述某一流量检测设备的深度前馈神经网络的输入信号和/或输出信号,执行对针对所述某一流量检测设备的深度前馈神经网络的单次学习动作,以获得经过多次学习后的深度前馈神经网络并作为人工预测模型输出包括:所述某一流量检测设备所在位置的垂直落差越大,选择的学习次数越多。

5.如权利要求1-3任一所述的设定信息关联参考平台,其特征在于:

所述多个流量检测设备用于分别测量所述河流边沿多个位置分别对应的多个现场流量数据包括:所述多个位置从所述河流的下流向所述河流的上流的水流方向分布。

6.如权利要求5所述的设定信息关联参考平台,其特征在于:

所述多个位置从所述河流的下流向所述河流的上流的水流方向分布包括:所述多个位置中,两两位置之间的间距相等。

7.如权利要求1-3任一所述的设定信息关联参考平台,其特征在于:

所述多个流量检测设备用于分别测量所述河流边沿多个位置分别对应的多个现场流量数据包括:所述多个流量检测设备的结构相同。

8.一种设定信息关联参考方法,所述方法包括使用如权利要求1-7任一所述的设定信息关联参考平台以在设备发生故障时基于其关联各个设备的输出信息智能预测发生故障的输出信息。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东企赢盈网络科技有限公司,未经山东企赢盈网络科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210126113.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top