[发明专利]基于色散补偿技术的远程微波频率测量装置及方法有效
| 申请号: | 202111330778.5 | 申请日: | 2021-11-10 |
| 公开(公告)号: | CN114050873B | 公开(公告)日: | 2023-09-12 |
| 发明(设计)人: | 孟晴晴;朱子行;赵尚弘;徐志燕;李赫;高从芮;薛凤凤;黄蓝锋;邹静;李怡 | 申请(专利权)人: | 中国人民解放军空军工程大学 |
| 主分类号: | H04B17/10 | 分类号: | H04B17/10;H04B17/20;H04B10/2525 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 710051 陕西省*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 色散 补偿 技术 远程 微波 频率 测量 装置 方法 | ||
1.一种基于色散补偿技术的远程微波频率测量装置,包括:中心站、中间链路和远端天线单元;其特征在于
中心站内,设有连续波激光器LD、光隔离器Isolator、第一光环形器OC1、色散补偿光纤DCF、第一偏振控制器PC1、偏振分束器PBS、第一光电探测器PDX和第二光电探测器PDY;
中间链路含有上行链路和下行链路,包括第一单模光纤SMF1、第二单模光纤SMF2、第一掺饵光纤放大器EDFA和第二掺饵光纤放大器EDFA;
远端天线单元,设有第二光环形器OC2、第二偏振控制器PC2、双偏振马赫增德尔调制器DPol-DMZM和天线;
在中心站,激光器产生的光载波经过第一光环形器的端口1输入,由端口3输出,沿下行链路经第一单模光纤SMF1和第一掺铒光纤放大器EDFA传输放大后到达远端天线单元;光隔离器位于激光器输出端与第一光环形器OC1端口1之间,只允许光载波沿着同一方向射出,防止光路反射;在远端天线单元,光载波输入第二偏振控制器PC2,由于光载波为线偏振光,因此通过控制第二偏振控制器PC2来对准双偏振马赫增德尔调制器主轴方向,第二偏振控制器PC2输出端连接到双偏振马赫增德尔调制器的3-dBY分支耦合器将光载波平均功分到双偏振马赫增德尔调制器两个支路;通过天线接收到的未知射频RF信号也分别加载到双偏振马赫增德尔调制器两个支路,分别对双偏振马赫增德尔调制器两个支路接收到的光载波进行调制;双偏振马赫增德尔调制器包括两个并联的双驱动马赫增德尔调制器、90°偏振旋转器PR和偏振束合器PBC;其中双驱动马赫增德尔调制器包括第一马赫增德尔调制器子调制器11和第二马赫增德尔调制器子调制器22,且每个子调制器包含2个射频输入口和2个直流偏置口;在第一马赫增德尔调制器子调制器11中,天线传输的未知射频RF信号加载到2个射频输入口,调节第一马赫增德尔调制器子调制器11的直流偏置电压值,第一马赫增德尔调制器子调制器11工作在正交偏置点,实现对第一马赫增德尔调制器子调制器11已接收到的光载波的双边带调制,获得第一调制光信号;在第二马赫增德尔调制器子调制器22中,天线传输的未知射频RF信号只加载到其中一路射频输入口,不施加偏置电压,实现对第二马赫增德尔调制器子调制器22已接收到的光载波的相位调制,获得第二调制光信号,且第二调制光信号经过90°偏振旋转器旋转后,实现与第一马赫增德尔调制器子调制器11输出的第一调制光信号正交,两路调制光信号经过偏振束合器合为一束正交偏振复用光;正交偏振复用光经过第二光环形器的端口2、端口3后,沿上行链路依次经第二单模光纤SMF2、第二掺饵光纤放大器EDFA的传输放大,之后送回远处的中心站;在中心站,接收到的正交偏振复用光经第一光环形器的端口2输入,由端口3输出,经过一段色散补偿光纤后,第一偏振控制器控制正交偏振复用光的偏振方向对准偏振分束器,由偏振分束器对正交偏振复用光进行偏振解复用处理,使两路偏振态分开;偏振分束器输出的两路信号分别由第一光电探测器输PDX、第二光电探测器PDY进行光电检测;使用电功率计分别测量经第一光电探测器输PDX、第二光电探测器PDY光电转换后的光电检测信号功率值,分别定义为P1,P2;使用所得两支路功率的比值构造出幅值比较函数ACF=P2/P1,即能够通过公式反求出微波频率的大小。
2.一种基于色散补偿技术的远程微波频率测量方法,其采用如权利要求1所述的基于色散补偿技术的远程微波频率测量装置,其特征在于,该方法具体包括下列步骤:
首先假定激光器产生光载波信号Ein(t)=E0exp(jωct),待测射频信号为VRF(t)=Vsin(ωRFt);其中E0、ωc分别为光载波信号的振幅和角频率,V、ωRF分别为待测射频信号的幅度和角频率;
第一步:产生连续的线偏振光:在中心站,连续波激光器LD将光载波输入到第一光环形器OC1端口1,从连接第一单模光纤的端口3输出,经过第一单模光纤和第一掺铒光纤放大器的传输放大,传送至远端的天线接收单元;光隔离器位于激光器输出端与第一光环形器OC1端口1之间,只允许光载波沿着同一方向射出,防止光路反射;
第二步:调制处理:由中心站输入的光载波经第二光环形器OC2端口1进入远端天线单元,光载波继而由第二光环形器OC2端口2输出给第二偏振控制器,由第二偏振控制器经3-dB的Y分支耦合器将光载波功分两路到双偏振马赫增德尔调制器DPol-DMZM的第一马赫增德尔调制器子调制器11和第二马赫增德尔调制器子调制器22;同时,在第一马赫增德尔调制器子调制器11和第二马赫增德尔调制器子调制器22中将天线截获的未知射频信号调制到各自接收到的光载波上;分别调节两个子调制器直流偏置电压,使得第一马赫增德尔调制器子调制器11实现对已接收到的光载波的双边带调制,第二马赫增德尔调制器子调制器22实现对已接收到的光载波的相位调制,且第二马赫增德尔调制器子调制器22输出的调制信号经过90°的偏振旋转器PR旋转,实现与第一马赫增德尔调制器子调制器11输出的调制光信号正交;定义来自第一马赫增德尔调制器子调制器11的调制光信号工作在x偏振方向,来自第二马赫增德尔调制器子调制器2的调制光信号工作在y偏振方向;在小信号调制下,双偏振马赫增德尔调制器DPol-DMZM两个输出端口的调制信号表达式如下:
其中,是调制指数,Vπ为半波电压,Jn(m)为n阶第一类贝塞尔函数,分别表示在x偏振方向的调制光信号和第二马赫增德尔调制器子调制器22在y偏振方向的调制光信号,分别表示两个正交偏振分量的单位向量,j代表虚数单位;通过公式(1)发现,经过强度调制和相位调制后的信号频谱函数都包含3个分量,输出光谱主要包括载波频率ωc和正负一阶边带频率ωc±ωRF,边带之间频率间隔为ωRF;两正交分量通过偏振合束器PBC合成一路后经过第二单模光纤和第二掺饵光纤放大器回传中心站,仍保持正交偏振态;
第三步:利用光纤的色散效应,使调制光信号产生与频率相关的功率衰落:偏振复用光信号经过长度为L1的第二单模光纤SMF后,由于光纤的色散效应,光载波和正负一阶边带处引入额外相移,偏振复用光信号的表达式为:
其中,表示由单模光纤色散引起的相移,β21=-λ2D1/2πc为单模光纤的二阶色散系数,L1为单模光纤长度,D1为单模光纤色散值,λ、c分别表示入射光波波长和真空光速;
第四步:色散补偿光纤DCF进行色散补偿:到达中心站后,偏振复用光信号通过第二光环形器OC2的端口2传输到端口3,再经过一段色散补偿光纤DCF产生相移,实现色散补偿;此时,偏振复用光信号表示为:
其中,表示色散补偿光纤引起的相移,β22=-λ2D2/2πc为色散补偿光纤的二阶色散系数,L2为色散补偿光纤长度,D2为色散补偿光纤色散值;
第五步:光信号转换为电信号:经过一段色散补偿光纤传输后的偏振复用光信号,经第一偏振控制器PC1对准后,偏振分束器PBS将两路调制的正交偏振态信号再次分开,一路输出给第一光电探测器PDX,另一路输出给第二光电探测器PDY;由于第一光电探测器PDX、第二光电探测器PDY的带宽有一定的限制,因此忽略链路和器件的损耗和高阶分量,滤除直流分量后,得到两路光电检测信号功率值分别为:
其中,Ri(i=1,2)分别为第一、第二光电探测器的响应度,f=ωRF/2π即待测微波信号频率;根据幅值比较函数ACF定义,在小信号调制情况下J0(m)≈1,ACF表示为:
其中K表示光链路中总的损耗量,在这里认为两路光在各自传输时总的损耗量是相等的,K=1;由等式(6)知,当光载波固定时,幅值比较函数ACF只与待测信号频率和传输光纤参数有关,与射频功率、光功率均无关;由等式(4)和(5)可知,经第一光电探测器PDX和第二光电探测器PDY两支路输出的的光电检测信号功率具有互补性,当传输光纤参数固定时,计算出ACF的一个单调映射区间,且在单调区间内,ACF值与待测信号的频率满足一一对应关系;由此,最大单调区间为tan函数的第一个单调递增区间(0-π/2),最大测频点fpeak
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军空军工程大学,未经中国人民解放军空军工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111330778.5/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种自然语言隐写分析方法
- 下一篇:柔性屏及柔性屏的褶皱消除方法





