[发明专利]基于自动化特征工程的反欺诈方法及系统在审
申请号: | 202110479370.8 | 申请日: | 2021-04-30 |
公开(公告)号: | CN113139818A | 公开(公告)日: | 2021-07-20 |
发明(设计)人: | 褚阳;董肖凯 | 申请(专利权)人: | 苏宁金融科技(南京)有限公司 |
主分类号: | G06Q30/00 | 分类号: | G06Q30/00;G06K9/62 |
代理公司: | 北京市万慧达律师事务所 11111 | 代理人: | 盛安平 |
地址: | 211800 江苏省南京市江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 自动化 特征 工程 欺诈 方法 系统 | ||
1.一种基于自动化特征工程的反欺诈方法,其特征在于,包括:
获取交易数据集,处理后得到交易记录特征向量及欺诈结果向量,并构建原始字段特征的特征集合F0;
在构建结构树的当前节点过程中,基于预设的转换函数对特征集合F0中的原始字段特征进行线性计算得到特征集合Fa,所述特征集合Fa包括线性扩展的新特征r及所述特征集合F0中的原始字段特征;
计算所述当前节点的所述特征集合Fa中每个新特征分别作为结构树划分属性的信息增益gf,选择最大的信息增益gf对应的特征f作为划分属性,将交易数据集划分成左右两部分子树得到结构树;
若特征f属于新特征则添加入结构树当前节点的特征集合Fa中,同时将特征f及其构造所用的转换函数合并入特征集合Fs;
利用结构树叶子节点的所述特征集合Fs及所述特征集合Fa作为训练集,训练用于识别欺诈交易的反欺诈模型。
2.根据权利要求1所述的方法,其特征在于,还包括:
分别进入左右两部分子树,判断当前节点中交易数据集样本数是否低于设定的最小阈值T,以及判断交易数据集的纯度是否高于设定的阈值G;
若前节点中的交易数据集样本数低于设定的最小阈值T,且交易数据集的纯度高于设定的阈值G则到达叶子节点,结构树构建完毕;
若前节点中的交易数据集样本数未低于设定的最小阈值T,和/或,交易数据集的纯度未高于设定的阈值G则重复构造下一节点的特征集合Fs及对应的所述特征集合Fa,直至到达叶子节点结构树构建完毕。
3.根据权利要求2所述的方法,其特征在于,获取交易数据集,处理后得到交易记录特征向量及欺诈结果向量,并构建原始字段特征的特征集合F0的方法包括:
获取的交易数据集D={X,Y},其中,X={x1,x2...,xn},Y={y1,y2,...,yn},所述xi表示第i条交易记录的特征向量,所述yi表示第i条交易记录的欺诈结果向量,所述1≤i≤n;
基于n条交易记录的特征向量集合,构建特征集合F0。
4.根据权利要求2或3所述的方法,其特征在于,所述转换函数的类型包括纵向方式的转换函数、横向方式的转换函数、时间窗口方式的转换函数中的一种或多种;
预设的转换函数数量为k个,所述W={w1,w2,...,wk}表示各转换函数对应的权重向量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏宁金融科技(南京)有限公司,未经苏宁金融科技(南京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110479370.8/1.html,转载请声明来源钻瓜专利网。