[发明专利]一种求解带交通选择路程规划问题的多目标存档蚁群寻优方法在审

专利信息
申请号: 202110329271.1 申请日: 2021-03-27
公开(公告)号: CN113159391A 公开(公告)日: 2021-07-23
发明(设计)人: 董明刚;曾慧斌 申请(专利权)人: 桂林理工大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/14;G06N3/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 541004 广*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 求解 交通 选择 路程 规划 问题 多目标 存档 蚁群寻优 方法
【说明书】:

发明公开了一种求解带交通选择路程规划问题的多目标存档蚁群寻优方法。此方法设计了一套正反馈存档存取机制,能充分的利用历史最优数据为后面的优化提供更多的参考,加快算法收敛速度,快速找到最佳路线。解决了游客在旅游时在玩、住、行方面选择和组合难题,为游客规划出合理的、在多个方面同时保持最优的旅游路线。

技术领域

本发明涉及旅游行程规划领域,特别涉及一种求解带交通选择路程规划问题的多目标存档蚁群寻优方法,特别设计了旅游行业背景下的旅游行程规划,即指定起点、终点以及开始、终止时间,为游客规划出一条合理的包含一系列景点的行程安排,在保证该行程能够满足时间约束和地点约束的情况下,尽可能的最大化景点总效用、最小化路线总费用、减小最大交通出行时间。

背景技术

随着人工智能的兴起和大数据技术的普及,传统行业与互联网技术的结合正在加速,电子商务形式的出现,改变着人们的旅游方式,由过去的被动接受服务到主动个性化选择服务的方式转变,尤其是经历本次疫情后,用户的线上选择预定的习惯明显将得到提升。但是,旅游的相关信息数据非常庞大,类型也多种多样,比如:酒店、景点、交通等等。面对海量的旅游信息,游客如果自己去查询筛选,不仅不方便,而且需要浪费大量时间,效率极低。如何更好的有针对性的帮助游客筛选出有用信息,为游客提供规划出个性化的出行方案,然后推荐给游客,已经变成了当今旅游行业急需解决的问题。旅程规划就是为广大游客量身定做,根据用户要求,为用户规划出一条在合理的、省钱、用户满意度高的旅游路线。

当前旅程规划问题的研究成果主要以路线总效用最大化作为研究目标,以及忽略交通工具和酒店等因素为前提。可事实上,用户出游时不仅想要该路线的体验最好,而且还有花费最少、最大通行时间最低的目标。游客在规划路线时,不仅只考虑景点,还需要选择交通出行工具和酒店,并对其进行合理的组合。因此我们将这些实际需求考虑进来更有现实意义。本发明针对带交通选择和酒店住宿的多目标旅程规划问题(many-objectivetourist trip design problem with hotel and traffic selection,简称MO-TTDP-THS)设计了多目标存档蚁群寻优方法,其主要包含景点聚合、进化搜索、行程分解三个部分,筛选出有用信息维护扩充存档,利用存档种的最优数据为后面的优化提供更多的参考,加快收敛速度。

发明内容

由于MO-TTDP-THS问题考虑了交通工具的选择,并且扩展成多目标优化。所以使用传统方法取求解该问题需要花费很长的时间才能得到满意的解。本文提出了一种多目标存档蚁群寻优方法,来解决以上问题。

本发明思路:现实生活中,大部分平台或者旅行社会推出一日游、两日游路线去吸引用户。这种营销策略之所以有效,是这种路线是经过大量历史数据统计所得到的在某时间段内最佳游览路线,具有效用高、花费小等符合用户实际需求的特点。本文从中受到启发,提出了一种多目标存档蚁群寻优方法,该方法设计了一种正反馈的历史信息存取策略,能够充分的利用历史有用信息,达到快速收敛的目的。

具体步骤为:

一种求解带交通选择路程规划问题的多目标存档蚁群寻优方法

步骤1:初始化各景点间的路径上的信息素初始值,设置最大迭代次数maxG,信息素启发因子α、期望启发因子β、信息素挥发因子ρ、蚂蚁数量n以及状态转移概率p0。建立最优路径存档(AR)和最优景点集存档(AS)。

步骤2:景点聚合策略:每只蚂蚁随机挑选出几个地点冲突的AR存档记录,进行聚合,将几个单独的景点聚合成大景点,加入到候选景点列表中。

步骤3:将n只蚂蚁放置在起点处。

步骤4:进化搜索,每只蚂蚁根据随机概率转移公式,计算候选景点列表中各个景点的选择概率,再根据轮盘赌法选择出下一景点以及通往下一景点的交通方式,将该景点加入路径后,从该蚂蚁候选景点列表中删除该景点。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林理工大学,未经桂林理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110329271.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top