[发明专利]碳纤维增强复合材料薄板的模压成型工艺优化方法有效
| 申请号: | 202110317769.6 | 申请日: | 2021-03-24 |
| 公开(公告)号: | CN113033051B | 公开(公告)日: | 2023-09-12 |
| 发明(设计)人: | 谢久明;武晋;周学均 | 申请(专利权)人: | 天津中德应用技术大学 |
| 主分类号: | G06F30/23 | 分类号: | G06F30/23;G06F30/28;G06F119/14 |
| 代理公司: | 北京企创智恒专利代理事务所(普通合伙) 16173 | 代理人: | 曹利华 |
| 地址: | 300350 天津*** | 国省代码: | 天津;12 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 碳纤维 增强 复合材料 薄板 模压 成型 工艺 优化 方法 | ||
1.一种碳纤维增强复合材料薄板的模压成型工艺优化方法,其特征在于,包括:
操作S100:建立碳纤维增强复合材料薄板模压成型的本构模型;
操作S200:根据所述本构模型进行有限元分析,得到分析结果;
操作S300:通过所述分析结果,优化所述模压成型的工艺参数;
所述碳纤维增强复合材料薄板包括基体,其中,所述操作S100包括:
操作S110:将所述碳纤维增强复合材料薄板等效为热流变复杂材料,添加与温度相关的垂直移动系数;
操作S120:在所述碳纤维增强复合材料薄板模压成型过程中,忽略所述基体固化反应所释放的热量在厚度方向上的热传递;
操作S130:忽略所述基体受热后的流动方向垂直于所述碳纤维增强复合材料薄板板面方向的浸渍和渗透;
操作S140:采用表示材料的本构模型及增强方程,材料的应力张量和有效应变张量在系统中采用圆柱坐标系表示;
操作S150:将三维广义模型等效为二维广义模型;
其中,所述基体包括:
树脂,填充于所述碳纤维增强复合材料薄板的各纤维之间;
其中,垂直于所述碳纤维增强复合材料薄板的板面方向,与所述板面内两方向构成笛卡尔坐标系,所述板面内两方向分别为x方向及y方向,垂直于所述板面的方向为z方向;
其中,所述操作S130包括:
忽略所述基体熔融状态厚度方向的流动,所述基体的流动连续性方程为:
其中,为单位时间内流入的所述基体的体积,为单位时间内的微元体的体积变化量,vx、vy分别为所述基体在x、y方向的微流动速度,为所述基体在熔融及压力下的体积变化,X、Y为所述纤维在x、y方向的位移;
其中,所述操作S130还包括:
通过Darcy定律来建立所述基体的材料渗流的运动方程,且在二维流动中,Darcy表示为:
式中,sx、sy分别为所述基体在各纤维构成的纤维网络的x方向与y方向上的渗透率;μ为所述树脂的粘性,pr为所述树脂的压力,所述基体浸渍的连续性方程表示为:
其中,所述操作S130还包括:
所述纤维不可压缩和伸展,所述树脂在所述纤维之间流动,且所述树脂处于饱和状态,所述纤维质量保持不变,碳纤维增强复合材料薄板的总应力为所述纤维的有效应力及所述树脂压力之差,表示为:
其中,为所述纤维的有效应力,δij为克罗内克函数,Pr为所述树脂压力;
根据Dancy定律,复合材料的压实方程表示为:
其中,Vf为载荷不为零时所述纤维的体积分数,μ是树脂粘度,Kxx为复合材料水平方向的渗透率,Kyy为复合材料在厚度方向的渗透率;
所述渗透率采用公式为:
其中,rf为纤维半径,K0为Kozeny常数;
根据Kozeny-German理论,材料孔隙表示为:
其中,Vol为所述复合材料的总体积,Volf为所述复合材料中的所述增强纤维的体积;
步骤S200是首先进行编写Abaqus程序,结合UMAT接口,再将所述本构模型嵌入到Abaqus中,形成碳纤维增强复合材料薄板结构分析模块;
然后采用有限元模拟分析优化成型工艺参数,在对碳纤维增强复合材料薄板结构进行模压成型时,采用所述碳纤维增强复合材料薄板结构分析模块进行分析,并调整模压成型的工艺参数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津中德应用技术大学,未经天津中德应用技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110317769.6/1.html,转载请声明来源钻瓜专利网。





