[发明专利]基于多尺度引导滤波的高动态红外图像细节增强方法在审
申请号: | 202110287389.2 | 申请日: | 2021-03-17 |
公开(公告)号: | CN113096053A | 公开(公告)日: | 2021-07-09 |
发明(设计)人: | 秦翰林;曾庆杰;延翔;梁毅;袁帅;杨硕闻;姚迪;张嘉伟;乐子涵;周慧鑫 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T5/20 | 分类号: | G06T5/20;G06T5/40;G06T5/00 |
代理公司: | 西安志帆知识产权代理事务所(普通合伙) 61258 | 代理人: | 侯峰;韩素兰 |
地址: | 710065 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 尺度 引导 滤波 动态 红外 图像 细节 增强 方法 | ||
本发明公开了一种基于多尺度引导滤波的高动态红外图像细节增强方法,对输入的高动态红外图像进行多尺度引导滤波分解,获得不同尺度的图像细节层;对所述不同尺度的图像细节层进行加权融合,获得多尺度融合的细节层,并通过与原始图像作差,获得相应的基本层;对所述多尺度融合的细节层和相应的基本层分别进行非线性压缩映射,获得增强的细节层和低动态的基本层;最后,叠加所述增强的细节层和低动态的基本层并进行归一化,获得细节增强的低动态红外图像。本发明能够快速高效地提取更多细节信息,也避免出现梯度翻转问题,细节增强性能和整体视觉效果较优。
技术领域
本发明属于高动态范围红外图像处理领域,具体涉及一种基于多尺度引导滤波的高动态红外图像细节增强方法。
背景技术
为了尽可能记录真实场景中丰富且细微的温差变化,现代高性能红外热像仪通常具备高动态范围成像能力,即能够输出14位甚至16位动态范围(对应灰度级为0~16383和0~65535)的原始红外图像数据;然而,常规显示设备的动态范围仅有8位,因此需要对高动态范围的原始红外图像进行压缩以用于8位显示和后续的计算机任务处理。
常用的动态范围压缩方法主要包括自动增益控制(AGC)和直方图均衡化(HE),AGC方法在剔除原始数据中小部分极端像素的基础上,将数据线性压缩映射成8位,然而这种方法往往导致生成的图像整体偏暗,对比度较低,细节不清晰,HE方法能够显著提升图像对比度,但由于直方图中背景尖峰的存在,容易使得灰度压缩后的图像中出现过饱和效应和部分细节丢失问题。为此,FLIR公司提出了数字图像细节增强(DDE)技术用于进一步解决高动态范围场景中定位低对比度目标的难题,此算法是一种高级非线性图像处理算法,可保留原始高动态范围图像中的细节信息,从DDE技术可见,在高动态范围红外图像压缩显示中,保持甚至增强细节信息来使生成的常规8位图像具备更优的可视性,是热成像领域中一项重要的研究内容。
发明内容
有鉴于此,本发明的主要目的在于提供一种基于多尺度引导滤波的高动态红外图像细节增强方法。
为达到上述目的,本发明的技术方案是这样实现的:
本发明实施例提供一种基于多尺度引导滤波的高动态红外图像细节增强方法,该方法为:对输入的高动态红外图像进行多尺度引导滤波分解,获得不同尺度的图像细节层;对所述不同尺度的图像细节层进行加权融合,获得多尺度融合的细节层,并通过与原始图像作差,获得相应的基本层;对所述多尺度融合的细节层和相应的基本层分别进行非线性压缩映射,获得增强的细节层和低动态的基本层;最后,叠加所述增强的细节层和低动态的基本层并进行归一化,获得细节增强的低动态红外图像。
上述方案中,所述对输入的高动态红外图像进行多尺度引导滤波分解,获得不同尺度的图像细节层,具体为:所述对输入的高动态红外图像进行多尺度引导滤波分解,采用四个不同尺度滤波核的引导滤波器来分别对输入的高动态红外图像进行滤波分解,其中四个滤波核大小均为3×3,滤波尺度因子分别为102、103、104、105,该多尺度引导滤波分解过程具体表达为:
式中,GFk表示不同尺度的引导滤波器,k=1,2,3,4;X为输入的高动态红外图像以及以其自身作为引导图像;s为滤波核的大小,即均设置为3×3;λk表示滤波尺度因子,分别设置为102、103、104、105;Bk和Dk为多尺度分解后得到的图像基本层和图像细节层,其中取B0=X。
上述方案中,对所述不同尺度的图像细节层进行加权融合,获得多尺度融合的细节层,并通过与原始图像作差,获得相应的基本层,具体为:对不同尺度的图像细节层分配不同的权值系数,然后进行线性加权融合从而获得多尺度融合的细节层,并通过与原始图像作差,获得相应的基本层,具体表达为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110287389.2/2.html,转载请声明来源钻瓜专利网。