[发明专利]斜坡感知方法、装置、机器人和存储介质在审
申请号: | 202110063124.4 | 申请日: | 2021-01-18 |
公开(公告)号: | CN112904306A | 公开(公告)日: | 2021-06-04 |
发明(设计)人: | 朱俊安;张涛 | 申请(专利权)人: | 深圳市普渡科技有限公司 |
主分类号: | G01S7/481 | 分类号: | G01S7/481 |
代理公司: | 深圳尚业知识产权代理事务所(普通合伙) 44503 | 代理人: | 王利彬 |
地址: | 518000 广东省深圳市南山区*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 斜坡 感知 方法 装置 机器 人和 存储 介质 | ||
本发明提供了一种斜坡感知方法、装置、机器人和计算机可读存储介质。斜坡感知方法基于激光雷达技术实现,包括下述步骤:将在斜坡临近区域扫描到的所有雷达点进行点云聚类,得到若干点云聚类;从所述若干点云聚类中筛选出疑似斜坡点云聚类;将筛选出的所述疑似斜坡点云聚类中属于直线型的点云聚类确认为斜坡点云聚类,将所述斜坡点云聚类对应的激光雷达扫描区域确认为斜坡。本发明将机器人配送路径上的斜坡与障碍物区分开来,保证了机器人的正常配送,并且仅在行进至预先标记好的斜坡临近区域时才进行感知,而当机器人不处于斜坡临近区域时则不需要感知,大大减少了计算量,也避免了非斜坡区域的误检测。
技术领域
本发明实施例涉及机器人技术领域,尤其涉及一种斜坡感知方法、装置、机器人和计算机可读存储介质。
背景技术
物流配送的成本压力使得配送机器人正逐渐应用于送货、送餐等各种短距离配送场景,这种无人化的配送方式不仅可以节约人力成本,还可提高用户的趣味性体验,并在一定程度上保障用户购物的私密性,所以配送机器人在短距离配送中的应用必定会越来越广泛。
机器人在配送途中可能会遇到障碍物,通常会通过激光雷达技术进行障碍物检测,出于安全考虑,一旦检测到障碍物就会停止前行。但是现实中配送路径上也可能会存在上下坡的情况,如图1所示,当坡度较大时,激光雷达的激光射线会打到斜坡上,使机器人误认为斜坡是障碍物,导致机器人不走或者执行预置的避障处理,这种情况下机器人执行避障又会导致无法走上斜坡而偏离事先确定的配送路线,影响正常配送。同理,当下坡时,由于激光雷达的激光射线会达到斜坡前方的平整路面上,也有可能认为是遇到障碍物而停止前行或进行避障。这种误检测严重影响了机器人的正常配送,亟待改进。
发明内容
本发明实施例所要解决的技术问题为如何避免将机器人配送路径上正常的上下坡误检测为障碍物,以致影响配送。
第一方面,本发明实施例提供了一种斜坡感知方法,所述斜坡感知方法基于激光雷达技术实现,包括下述步骤:将在斜坡临近区域扫描到的所有雷达点进行点云聚类,得到若干点云聚类;从所述若干点云聚类中筛选出疑似斜坡点云聚类;将筛选出的所述疑似斜坡点云聚类中属于直线型的点云聚类确认为斜坡点云聚类,将所述斜坡点云聚类对应的激光雷达扫描区域确认为斜坡。
第二方面,本发明实施例提供了一种斜坡感知装置,包括:聚类单元,用于将在斜坡临近区域扫描到的所有雷达点进行点云聚类,得到若干点云聚类;筛选单元,用于从所述若干点云聚类中筛选出疑似斜坡点云聚类;斜坡确认单元,用于将筛选出的所述疑似斜坡点云聚类中属于直线型的点云聚类确认为斜坡点云聚类,将所述斜坡点云聚类对应的激光雷达扫描区域确认为斜坡。
第三方面,本发明实施例提供了一种机器人,包括:存储器和处理器;所述存储器存储有可执行程序代码;与所述存储器耦合的所述处理器,调用所述存储器中存储的所述可执行程序代码,执行如第一方面所述的斜坡感知方法。
第四方面,本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现如第一方面所述的斜坡感知方法。
上述各方面提供的本发明实施例中,首先将在所述斜坡临近区域扫描到的所有雷达点进行点云聚类,然后最终从中筛选出疑似斜坡点云聚类,再进一步从疑似斜坡点云聚类得到斜坡点云聚类,将所述斜坡点云聚类对应的激光雷达扫描区域确认为斜坡,从而可以将机器人配送路径上的斜坡与障碍物区分开来,保证了机器人的正常配送,并且仅在行进至预先标记好的斜坡临近区域时才进行感知,而当机器人不处于斜坡临近区域时则不需要感知,大大减少了计算量,也避免了非斜坡区域的误检测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市普渡科技有限公司,未经深圳市普渡科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110063124.4/2.html,转载请声明来源钻瓜专利网。