[发明专利]一种压电激励的模态切换型微操控测量系统及其方法有效
申请号: | 202110060730.0 | 申请日: | 2021-01-18 |
公开(公告)号: | CN112881240B | 公开(公告)日: | 2022-04-08 |
发明(设计)人: | 王鑫;王亮;冯浩人;金家楣 | 申请(专利权)人: | 南京航空航天大学 |
主分类号: | G01N15/00 | 分类号: | G01N15/00;G01N15/10 |
代理公司: | 江苏圣典律师事务所 32237 | 代理人: | 韩天宇 |
地址: | 210016 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 压电 激励 切换 操控 测量 系统 及其 方法 | ||
1.一种压电激励的模态切换型微操控测量系统,其特征在于,包括微操控装置、显微检测装置和计算装置;
所述微操控装置包括容器、基板、第一至第四换能器、第一至第四固定螺栓、以及第一至第四固定圆筒;
所述容器为上端开口下端封闭的空心圆柱体,其侧壁上周向均匀设有第一至第四夹持片;所述第一至第四夹持片均和容器轴线垂直、中心均设有通孔;
所述第一至第四换能器结构相同,均包含连接圆台、连接柱、压电陶瓷模块、预紧柱和预紧螺栓;其中,所述压电陶瓷模块包含2n片呈圆环状的压电陶瓷片,n为大于等于1的自然数;所述预紧螺栓包含螺帽和螺柱;所述连接柱呈圆柱状,其下端面沿轴线设有和所述预紧螺栓相配合的螺纹孔;所述连接圆台呈圆台状,其面积较大的一端和所述连接柱的上端面同轴固连、面积较小的一端中心设有螺纹孔;所述预紧柱为圆柱体,其沿轴线设有供所述预紧螺栓的螺柱穿过的沉头通孔;所述预紧螺栓的螺帽位于预紧柱沉头通孔的沉孔中,螺柱依次穿过预紧柱上的沉头通孔、2n片压电陶瓷片中心的通孔后和所述连接柱的螺纹孔螺纹相连,用于将所述2n片压电陶瓷片夹在连接柱、预紧柱之间并调节2n片压电陶瓷片两端的预压力;所述2n片压电陶瓷片均沿其厚度方向极化,且相邻压电陶瓷片的极化方向相反;所述预紧柱的侧壁两侧设有对称的连接耳;
所述第一至第四固定螺栓一一对应穿过第一至第四夹持片中心的通孔后,再和第一至第四换能器连接圆台的螺纹孔一一对应螺纹相连,将所述容器固定在所述第一至第四换能器之间;
所述第一至第四固定圆筒结构相同,均为两端开口的通孔圆柱体;所述第一至第四固定圆筒一一对应套在所述第一至第四换能器的预紧柱外,上端和其对应预紧柱两侧的连接耳固连,下端均和所述基板上端面固连;
所述容器用于盛放液体承载介质以及液体承载介质中待测量形貌参数的微球;
所述显微检测装置采用商用工业显微镜,所述微操控装置的基板放置在显微检测装置的载物台上,使得容器水平放置;所述显微检测装置用于观测容器中微球的图像并将其传递给所述计算装置;
所述计算装置用于接收显微检测装置采集到的图像并对其进行分析,通过机器学习得到微球的运动轨迹和其形貌参数。
2.根据权利要求1所述的压电激励的模态切换型微操控测量系统,其特征在于,所述第一至第四换能器连接柱的侧壁上均设有一对平键,以配合其预紧螺栓调节其压电陶瓷模块两端的预压力。
3.根据权利要求1所述的压电激励的模态切换型微操控测量系统,其特征在于,所述n取2。
4.基于权利要求1所述的压电激励的模态切换型微操控测量系统的微操控方法,其特征在于,包含以下步骤:
令第一至第四换能器在基板上按顺时针依次排列,对第一至第四换能器分别施加第一至第四简谐电压信号,所述第一至第四简谐电压信号均为交流谐波信号且电压幅值相等、角频率相等;
如果需要对微球进行旋转操控:
调整第一至第四简谐电压信号使其相位依次相差π/2且角频率均等于预设的第一频率阈值ω1,同时激发出容器上的在空间上相差π/2相位差的模态,此时,液体承载介质中的声场分布与模态一致,即声压节点对应模态节点、声压波腹对应模态振幅最大处,放置在容器液体承载介质内的微球在声辐射力和液体粘滞力的作用下会朝着声压节点运动;而相差π/2相位差的模态同时激发耦合出行波模态,在行波模态的声压条件下微球绕着容器中心做旋转运动;
如果需要对微球进行移动操控:
调整第一至第四简谐电压信号使其相位差为零且角频率均等于预设的第二频率阈值ω2,激发出容器的分离模态,此时容器中心处为振幅最大处和声压波腹区域,声压节点位置则分布在容器中心与其侧壁之间;在声辐射力和液体粘滞力的作用下放置在容器中心处的微球沿着半径方向朝圆周上的声压节点运动,从而实现对微球的移动操控;
如果需要对微球进行聚集操控:
调整第一至第四简谐电压信号使得第一简谐电压信号和第三简谐电压信号的相位差为零、第二简谐电压信号和第四简谐电压信号的相位差为零、第一简谐电压信号和第二简谐电压信号的相位差为π/2,且第一至第四简谐电压信号的角频率均为预设的第三频率阈值ω3,激发出容器的聚集模态;在聚集模态下容器中心处为模态节点位置和声压节点位置,而振幅最大处和声压波腹则在容器中心与其侧壁之间;在声辐射力和液体粘滞力的作用下放置在容器内的微球沿着半径方向朝中心的声压节点运动,从而实现对微球的聚集操控。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110060730.0/1.html,转载请声明来源钻瓜专利网。
- 上一篇:显示面板及其制备方法、显示装置
- 下一篇:公路伸缩缝快速密封加固装置及方法