[发明专利]CeO2 有效
申请号: | 202011368896.0 | 申请日: | 2020-11-30 |
公开(公告)号: | CN112516997B | 公开(公告)日: | 2023-04-18 |
发明(设计)人: | 陈莹;刘勇;昝佳慧;谢晨;范曲立 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | B01J23/34 | 分类号: | B01J23/34;B01J35/02 |
代理公司: | 南京正联知识产权代理有限公司 32243 | 代理人: | 王素琴 |
地址: | 210023 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | ceo base sub | ||
本发明公开了一种CeOsubgt;2/subgt;/MnOsubgt;2/subgt;纳米棒的制备方法,是以铈盐和无机碱搅拌后在90℃‑140℃烘箱中水热反应7‑15 h,取沉淀物洗涤至中性,加入KMnOsubgt;4/subgt;制备而成,所得CeOsubgt;2/subgt;/MnOsubgt;2/subgt;纳米棒具有较好的稳定性和催化性能,制备方法简单,可用于污水处理等领域;制备主原料为简单的无机材料,价格低廉;且本发明公开的制备方法的制备步骤简单,制备周期短,有利于该纳米棒材料的大规模推广使用。
技术领域
本发明涉及材料制备技术领域,具体涉及一种CeO2/MnO2纳米棒的制备方法。
背景技术
稀土金属具有较强的储氧能力,而且热稳定性好,且稀土金属和过渡金属氧化物混合后可以有效地提高催化剂的活性和寿命。CeO2是一种重要的稀土金属氧化物,具有过氧化氢酶活性,CeO2通过Ce4+和Ce3+之间的高效氧化还原反应循环具有储氧和释放氧的作用,现已被广泛应用于各个领域,包括抛光材料、燃料电池、氧传感器、催化剂等。但纯CeO2的结构热稳定性、氧化还原反应性较差,易烧结使其储氧能力下降,从而限制了CeO2的应用,需与其他金属氧化物混合反应来提高其催化活性。
锰存在多种价态的氧化物,常被用作多相催化剂的结构和电子助剂,特别是锰的氧化物与CeO2混合形成CeO2/MnO2复合物时可表现出较好的催化活性。
但是,迄今为止还未研究出合成工艺简单又能保证产物活性的CeO2/MnO2制备方法。目前常用于制备CeO2/MnO2纳米棒的方法主要有硬模板法、沉淀法等;硬模板法是将选定的无机前驱物引入硬模板孔道中,然后经焙烧后在纳米孔道中生成氧化物,再除去硬模板形成相应的介孔材料的方法。硬模板法分为三步:①将合适前驱物浸渍,使之进入介孔道中;②在可控环境下热处理前驱物,将其转化为刚性骨架;③化学法脱除模板。该方法的整体合成过程复杂,不适用于工业上大规模生产。沉淀法是在铈、锰的盐溶液中加入浓氨水调节pH值,反应一定时间后,将过滤得到的沉淀物在较高的温度下焙烧一定时间后完成复合纳米棒的制备,虽然沉淀法的工艺过程比较简单,但是需要在较高温度下焙烧,高温焙烧时容易使纳米粒子发生团聚,降低其催化性能。
因此研究出一种低成本、流程简单、易于工业化生产且产物催化活性高的CeO2/MnO2纳米棒制备方法对进一步拓宽其市场应用范围有着重要意义。
发明内容
本发明的目的在于提供一种CeO2/MnO2纳米棒的制备方法,整体操作流程简单,制备周期短,原料来源广泛,价格低廉,便于工业化大规模推广应用。
本发明是这样来实现的:一种CeO2/MnO2纳米棒的制备方法,具体的制备步骤为:
1)将一定量的铈盐和无机碱经充分搅拌后形成白色悬浮液;
2)将白色悬浮液移入高压反应釜中在90℃-140℃烘箱中水热反应7-15 h;
3)弃上清,将沉淀物洗涤至中性,超声分散后,加入KMnO4溶液反应1-3h制得CeO2/MnO2纳米棒;
4)将步骤3)中制得的CeO2/MnO2纳米棒经低浓度的HCl洗涤除去杂质后,冻干。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011368896.0/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种眼科手术护理装置
- 下一篇:一种生物除臭剂的制备方法
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法