[发明专利]一种用于毫米波功率计的自平衡电桥电路在审
申请号: | 202010745009.0 | 申请日: | 2020-07-29 |
公开(公告)号: | CN112067873A | 公开(公告)日: | 2020-12-11 |
发明(设计)人: | 袁文泽;丁晟;谷若晨;崔孝海;吴昭春;赵巍;刘潇蒙;丁建新 | 申请(专利权)人: | 中国计量科学研究院 |
主分类号: | G01R17/10 | 分类号: | G01R17/10;G01R21/02 |
代理公司: | 北京德崇智捷知识产权代理有限公司 11467 | 代理人: | 申星宇 |
地址: | 100031 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 用于 毫米波 功率 平衡 电桥 电路 | ||
本发明公开了一种用于毫米波功率计的自平衡电桥电路,包括参考电阻、热敏电阻和比较模块,所述参考电阻和所述热敏电阻分别与所述比较模块连接,所述热敏电阻设置在所述毫米波功率计芯片上用以检测芯片的工作温度,所述比较模块包括第一运算放大器、第一二极管,第一三极管,第二运算放大器、第二二极管和第二三极管,本发明的参考电阻和热敏电阻采用四线连接,其中两线用于提供环路电流,另两线用于电阻两端电压测量,从而减小引线电阻带来的影响至忽略不计,参数调节方便,仅需通过改变电容大小来改变平衡速度,无需调节其他电容电感。
技术领域
本发明属于电桥电路技术领域,涉及一种用于毫米波功率计的自平衡电桥电路。
背景技术
随着毫米波技术的广泛应用,对毫米波功率进行准确测量的需求变得更加急迫。毫米波功率测量技术主要可分为二极管检波和量热式两种。检波式功率计可以进行毫米波功率的快速测量,但限于其工作原理,无法通过量热式基准对其进行准确定标。
量热式毫米波功率计配套的传感器中的热敏电阻并不直接吸收毫米波功率,芯片上的吸波材料吸收毫米波导致芯片温升,电路层上的热敏电阻的阻值会发生相应变化,这类传感器也被称为旁热式热敏电阻功率传感器。如果未加入毫米波功率前预先以直流功率将热敏电阻偏置在特定阻值上,并以闭环控制的方式保持不变,则当加入毫米波功率后,闭环电路将自动减少直流功率以维持电路平衡。
目前这类功率计实际采用的闭环控制电路非常复杂,首先要用惠斯通电桥测得偏差信号,放大后还要经过调节器进行参数整定,更主要的缺点是:采用惠斯通电桥测量偏差时,所有电阻都不是以四线方式接入电桥,因而无法根据电桥两端电压准确计算平衡时电阻损耗的直流功率,因此,需要一种能够解决上述问题的用于毫米波功率计的自平衡电桥电路。
发明内容
本发明的目的旨在,针对现有用于毫米波功率计的自平衡电桥电路,本发明为了解决旁热式热敏电阻功率传感器所配接功率计的闭环控制问题的用于毫米波功率计的自平衡电桥电路。
本发明包括参考电阻和热敏电阻,包括比较模块,所述参考电阻和所述热敏电分别与所述比较模块连接,所述热敏电阻设置在所述毫米波功率计芯片上用以检测芯片的工作温度,所述比较模块包括第一运算放大器、第一二极管,第一三极管,第二运算放大器、第二二极管和第二三极管,所述参考电阻的第一端和第二端分别与第一运算放大器的负极输入端和第二放大器的正极输入端连接,所述热敏电阻的第一端和第二端分别与第二运算放大器的负极输入端和第一运算放大器的正极输入端连接,所述第一运算放大器的输出端与第一二极管的负极端连接,所述第一二极管的正极端与第一三极管的基极连接,所述第一三极管的发射极与所述参考电阻的第一端连接,所述第一三极管的集电极与所述热敏电阻的第一端连接,所述第二运算放大器的输出端与第二二极管的负极端连接,所述第二二极管的正极端与第二三极管的基极连接,所述第二三极管的发射极与所述热敏电阻的第二端连接,所述第二三极管的集电极与所述参考电阻的第二端连接。
进一步地,所述热敏电阻并联有第一电容。
进一步地,所述第一运算放大器和第二运算放大器均设置有可调整电阻。
进一步地,两个所述可调整电阻上串接有接地电容。
与现有技术相比,本发明具有以下有益效果:
本发明的电阻采用四线连接,其中两线用于提供环路电流,另两线用于电阻两端电压测量,从而减小引线电阻带来的影响至忽略不计。参数调节方便,仅需通过改变电容大小来改变平衡速度,无需调节其他电容电感。
附图说明
图1为用于毫米波功率计的自平衡电桥电路示意图;
具体实施方式
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量科学研究院,未经中国计量科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010745009.0/2.html,转载请声明来源钻瓜专利网。