[发明专利]智能的预测模型选择方法及装置在审

专利信息
申请号: 202010458512.8 申请日: 2020-05-26
公开(公告)号: CN111639798A 公开(公告)日: 2020-09-08
发明(设计)人: 不公告发明人 申请(专利权)人: 华青融天(北京)软件股份有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q10/06;G06Q40/02
代理公司: 北京超凡宏宇专利代理事务所(特殊普通合伙) 11463 代理人: 安卫静
地址: 100083 北京市海*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 智能 预测 模型 选择 方法 装置
【说明书】:

发明提供了一种智能的预测模型选择方法及装置,涉及数据处理的技术领域,包括:先获取待处理的时间序列;其中,待处理的时间序列为用户在执行金融交易操作之后得到的交易数据;然后对待处理的时间序列进行特性分析,得到待处理的时间序列的特性信息;其中,特性信息用于表征待处理的时间序列的时间特性;从预设预测模型库中查找与特性信息相匹配的候选预测模型;最后基于待处理的时间序列,从相匹配的候选预测模型中选择出最优预测模型,以通过最优预测模型预测未来目标时间段内所产生的交易数据。本发明通过待处理的时间序列的特性信息选择最优预测模型的方式,提高了选择出最优预测模型的成功率,进而提高了预测结果的准确性。

技术领域

本发明涉及数据处理技术领域,尤其是涉及一种智能的预测模型选择方法及装置。

背景技术

为了有效预测银行在未来某一时间段内的交易数据,需要对预测模型进行合理地选择。现有的预测模型选择方法存在以下缺陷:在时间序列中近期数据有异常时,即使对时间序列进行平滑处理,也无法消除异常数据的影响。同时,不同的预测模型受异常数据的影响程度不同。若仅考虑近期异常数据,简单的平均模型为最优模型。但是考虑整个数据长度的时间序列,Holt-winters模型为最优模型,由于现有技术的缺陷,简单的平均模型可能会被选择为最优模型。

因此,在时间序列的近期数据有异常时,现有方法存在选择最优预测模型的正确率较低、可靠性差的缺陷,容易使得预测的结果不准确。

发明内容

本发明的目的在于提供一种智能的预测模型选择方法及装置,以缓解了现有技术中存在的选择最优预测模型的正确率较低、可靠性差的缺陷,容易使得预测的结果不准确的技术问题。

第一方面,本发明提供的一种智能的预测模型选择方法,其中,包括:获取待处理的时间序列;其中,所述待处理的时间序列为用户在执行金融交易操作之后得到的交易数据;对所述待处理的时间序列进行特性分析,得到所述待处理的时间序列的特性信息;其中,所述特性信息用于表征所述待处理的时间序列的时间特性,所述时间特性包括以下至少一种:周期性、非周期性、线性、非线性、自相关性和非自相关性;从预设预测模型库中查找与所述特性信息相匹配的候选预测模型;基于所述待处理的时间序列,从所述相匹配的候选预测模型中选择出最优预测模型,以通过所述最优预测模型预测未来目标时间段内所产生的交易数据。

进一步地,基于所述待处理的时间序列,从所述相匹配的候选预测模型中选择出最优预测模型包括:基于所述待处理的时间序列确定数据训练样本和数据测试样本;基于所述数据训练样本和所述数据测试样本,在所述相匹配的候选预测模型中确定所述最优预测模型。

进一步地,所述相匹配的候选预测模型的数量为多个;基于所述数据训练样本和所述数据测试样本,在所述相匹配的候选预测模型中确定所述最优预测模型包括:通过所述数据训练样本对每个候选预测模型进行训练;将所述数据测试样本分别输入至每个训练之后的候选预测模型,得到多组预测数据;其中,每个候选预测模型输出一组所述预测数据;基于每组所述预测数据和所述数据测试样本所对应的真实数据,计算每个候选预测模型的目标误差;其中,所述目标误差包括以下至少之一:均方误差,均方根误差,平均绝对误差,平均绝对百分比误差,对称平均绝对百分比误差和平均绝对比例误差;将所述目标误差最小的候选预测模型确定为所述最优预测模型。

进一步地,对所述待处理的时间序列进行特性分析包括:将所述待处理的时间序列进行预处理,并对预处理之后得到的所述待处理的时间序列进行特性分析;其中,所述预处理包括平滑处理。

进一步地,所述预设预测模型库中的预测模型包括以下至少一种:朴素贝叶斯模型,平均模型,滑动平均模型,指数平滑模型,自回归移动平均模型;其中,所述指数平滑模型包括:一次指数平滑模型,两次指数平滑模型和三次指数平滑模型。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华青融天(北京)软件股份有限公司,未经华青融天(北京)软件股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010458512.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top