[发明专利]一种基于Retinex的暗图像增强方法在审

专利信息
申请号: 202010101186.5 申请日: 2020-02-18
公开(公告)号: CN113344798A 公开(公告)日: 2021-09-03
发明(设计)人: 凌泽乐;高明;金长新 申请(专利权)人: 济南浪潮高新科技投资发展有限公司
主分类号: G06T5/00 分类号: G06T5/00;G06N3/04;G06N3/08;G06T7/90
代理公司: 济南泉城专利商标事务所 37218 代理人: 李桂存
地址: 250104 山东省济南市*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 retinex 图像 增强 方法
【说明书】:

一种基于Retinex的暗图像增强方法,将图像从RGB图像转换成HSV图像,更加符合人眼视觉。将所有层直接连接在一起。在这种新型架构中,每层的输入由所有之前层的特征映射组成,其输出将传输给每个后续层。这些特征映射通过深度级联聚合。提升了神经网络的深度,解决了梯度消失问题。原始网络在网络末端用最近邻的方法上采样达到高分辨率尺寸,与原始网络相比改进EnhanceNet网络采用双线性插值上采样方法,采用这种方法不需要进行学习,运行速度快,操作简单。只需要设置好固定的参数值即可,设置的参数就是中心值需要乘以的系数。并且与原有最近邻算法上采样相比较采用新的上采样方法可以将图像显示更加清晰,网络效果进一步提升。

技术领域

发明涉及图像处理技术领域,具体涉及一种基于Retinex的暗图像增强方法。

背景技术

随着科技进步,新的图像技术在逐渐推广,在日常生活中人们对于图像的要求也越来越高,针对阴天或夜晚等弱光条件下拍摄的图像具有亮度低、对比度低和细节模糊等问题,这个时候就需要把目标的亮度提高一点。传统基本做法是对于频域与空域进行处理,这些基本方法都只针对于特定场景下图像增强,对于复杂环境的图像增强效果并不明显,近年来,基于深度学习的图像增强技术取得卓越进展,在高级图像理解任务,比如:图像分类、目标检测等方面取得令人瞩目的成绩。基于深度学习算法的图像增强技术成为研究的热点,常规做法是将图像数据训练集暗图像与亮图像进行直接训练,得到权重参数但是修复完成后视觉效果以及图像质量有待提高。因此技术革新的新型暗图像增强技术是十分有必要的。

发明内容

本发明为了克服以上技术的不足,提供了一种使得暗图像增强,提升图像的细节以及对比度,将图像还原成光照充分的条件下的图像,提升图像的辨识度的暗图像增强方法。

本发明克服其技术问题所采用的技术方案是:

一种基于Retinex的暗图像增强方法,包括如下步骤:

a)将输入计算机的彩色图片进行颜色通道转换,将图片由RGB图像转换到HSV图像,得到H通道图像、S通道图像和V通道图像;

b)将H通道图像、S通道图像和V通道图像输入EnhanceNet网络,EnhanceNet网络为3*3卷积核,EnhanceNet网络对各个通道图像进行L次卷积处理,提取相关特征数据,每次卷积操作得到一层,得到L个层,使用ReLU及3*3的卷积得到深度为64的特征映射图像;

c)将DenseNet残差网络引入步骤b)中的EnhanceNet网络,将步骤b)中的L层使用DenseNet残差网络连接在一起,每个层的输入由所有之前层的特征映射组成;

d)将特征映射图像进行双线性插值上采样,采样后进行两次卷积操作;

e)使用ReLU和3*3卷积核对两次卷积操作后的特征图像进行卷积,得到输出结果Iest,通过公式计算得到损失函数LE,其中IHR为原始高分辨率图像,通过计算损失函数得到优化后的图像;

f)将优化后的图像的H通道、S通道和V通道使用颜色通道合成RGB图像L(x,y);

g)通过公式r(x,y)=logR(x,y)=logS(x,y)L(x,y)计算得到最终图像r(x,y),R(x,y)为反射图像,将图像L(x,y)与原始图像进行求解卷积得到优化后的增强图像。

进一步的,步骤b)中的EnhanceNet网络采用步长为2的3*3的卷积核对H通道图像、S通道图像和V通道图像进行卷积处理。

进一步的,步骤d)中使用ReLU和3*3卷积核进行卷积操作,卷积长度为特征映射图像深度的2倍,卷积宽度为特征映射图像深度的2倍。

进一步的,步骤d)中通过公式

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于济南浪潮高新科技投资发展有限公司,未经济南浪潮高新科技投资发展有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010101186.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top