[发明专利]一种基于领域知识迁移的不同条件下眼部疾病的预测和模拟方法有效
申请号: | 202010052965.0 | 申请日: | 2020-01-17 |
公开(公告)号: | CN110957042B | 公开(公告)日: | 2022-12-27 |
发明(设计)人: | 孟巍;施丹莉 | 申请(专利权)人: | 广州慧视医疗科技有限公司 |
主分类号: | G16H50/50 | 分类号: | G16H50/50;G16H30/20 |
代理公司: | 广州市南锋专利事务所有限公司 44228 | 代理人: | 刘媖 |
地址: | 510010 广东省广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 领域 知识 迁移 不同 条件下 眼部 疾病 预测 模拟 方法 | ||
本发明公开了一种基于领域知识迁移的不同条件下眼部疾病的预测和模拟方法,包括条件生成网络,用于学习和模拟不同疾病、不同严重程度条件下所出现临床表现的概率分布;性能评价网络,用于评价生成网络的生成结果真实性;预测网络,用于对生成网络的生成结果进行条件判断和眼病预测;门控网络,用于根据真实环境需求,调整生成网络和判别网络之间的博弈平衡。本方法可以根据时间预测未来眼病的发展,可以对多个不同的影响因素进行分解、模拟不同条件下的眼病进展,可以用于临床研究和健康宣教。
技术领域
本发明涉及一种眼病的预测方法,具体是一种根据不同指标模拟在不同条件下的眼部疾病进展的方法。
背景技术
眼睛是人获取信息最重要的器官之一,眼部发生不可逆的致盲性疾病,将严重影响患者的生存质量。故对眼部疾病的发生与发展进行预测,不仅能够加强高危人群的健康管理意识、防患于未然,也能指导临床治疗和随访安排。
眼部是唯一可以通过设备直接、清晰地观测血管的部位。眼部微血管的健康状态与全身的微血管健康状态密切相关,受全身多项指标的影响。故可以通过结合多项指标,如年龄、血压、血糖、糖化血红蛋白、BMI等与眼底检查来预测眼部血管相关疾病的发生与发展。目前存在的预测方法存在不足,不能在分离多影响因素的条件下直观地展示疾病的发生与发展状态。
同时,在进行预测眼部疾病的时候,眼部的结构如神经纤维层厚度、脉络膜厚度都会受年龄和不同疾病的影响而改变,故在分离多影响因素的条件下直观地展示疾病在不同条件下的发生发展状态对于疾病的研究、病人的宣教都很有意义。
发明内容
本发明的目的是克服现有技术中的不足,提供一种根据不同指标预测和模拟在不同条件下的眼部疾病进展的方法。
为实现上述目的,本发明所采用的技术方案是:
一种基于领域知识迁移的不同条件下眼部疾病的预测和模拟方法,包括:
1) 条件生成网络:用以学习和模拟不同疾病和不同严重程度条件下所出现临床表现的概率分布;
具体方法:将代表不同疾病和不同严重程度和不同影响因素的数值作为不同变量输入网络,形成一个特征向量,条件生成网络根据不同的特征向量做反卷积操作进行上采样,生成一份特征图谱。其训练方式以提高生成的特征图谱与训练时输入的特征图谱的相似程度,欺骗性能评价网络为目的,条件生成网络的损失函数为重建损失、对抗损失、交叉熵或平滑的L1损失;
2) 性能评价网络:用以评价生成网络的生成结果真实性;
具体方法:将不同变量输入形成一个特征向量,将特征向量做复制填充或加零填充后使其与输入图像的尺寸大小相同,并作为领域知识埋入图像的另一个维度中做特征编码处理,产生输入的特征图谱,通过卷积神经网络对生成的特征图谱和输入的特征图谱进行特征提取,比较特征之间的相似度,如果生成的特征图谱与训练时输入的特征图谱并不相似,则判定条件生成网络生成失败,需要重新训练和重新生成;其训练方式为不断提高性能评价网络的评价标准,让条件生成网络通不过其评价为目的,条件生成网络的损失函数为对抗损失、交叉熵或平滑的L1损失;
3) 预测网络:用以对生成网络的生成结果进行解码,作出输入基线图片条件下的眼病预测;
具体方法:条件生成网络训练好,进行使用时,将生成的特征图谱进行通道分离和解码,将生成的特征图谱中不同位置的特征分解为代表不同疾病、不同严重程度、不同影响因素的数值和这些变量对应的图片,对结果进行分析展示,比较预测图片与基线图片的像素间差异,在热力图中高亮有差异的部分,作出输入基线图片条件下的眼病预测;
4) 门控网络:用以根据真实环境需求,调整生成网络和性能评价网络之间的博弈平衡。
具体方法:根据真实环境需求,设置训练条件生成网络和性能评价网络的占比,由门控网络控制条件生成网络和性能评价网络的间隔训练次数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州慧视医疗科技有限公司,未经广州慧视医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010052965.0/2.html,转载请声明来源钻瓜专利网。