[发明专利]一种基于PCA-KNN的TBM施工围岩综合分级预测方法有效
| 申请号: | 201911120644.3 | 申请日: | 2019-11-15 |
| 公开(公告)号: | CN111222683B | 公开(公告)日: | 2022-09-20 |
| 发明(设计)人: | 薛翊国;李广坤;邱道宏;公惠民;张贯达 | 申请(专利权)人: | 山东大学 |
| 主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/08;G06F30/20;G06F111/10 |
| 代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 李圣梅 |
| 地址: | 250061 山东*** | 国省代码: | 山东;37 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 pca knn tbm 施工 围岩 综合 分级 预测 方法 | ||
1.一种基于PCA-KNN的TBM施工围岩综合分级预测方法,其特征是,包括:
以TBM实际施工速度为指标将施工围岩分级;
确定TBM施工围岩综合分级所有的影响因素指标;
获取需要进行预测的工区影响因素指标数据和相应的根据施工速度分级的综合围岩等级分级数据,并对影响因素指标值进行均值方差归一化;
采用主成分分析法对已开挖得到的影响因素进行主成分分析,得到若干主成分变量,并与根据施工速度分级的综合围岩等级相对应;
采用k近邻算法对所得到的若干主成分变量及对应的综合围岩等级进行训练学习,建立各指标-综合围岩分级的数学模型;
基于训练数据对检测数据提取主成分并用已建立的数学模型验证所建立模型的准确性;
获取未开挖掌子面附近进行影响因素指标值,并基于训练数据的平均值和标准差等进行主成分分析,得到相应的主成分后用已获得的数学模型进行TBM施工围岩综合分级预测;
根据已有的工程实例,基于TBM施工的日平均掘进速度V将TBM施工围岩分为如下表1的四个等级:
表1基于TBM日均掘进速度的施工围岩分级
其中,表中v表示大于1.2m/h的TBM日掘进速度;
确定TBM施工围岩综合分级所有的影响因素指标为:场切深指数FPI,为x1;岩石强度,为x2;岩体完整性,为x3;地下水状态,为x4;初始地应力状态,为x5;隧道轴线与主要软弱结构面夹角,为x6,其中场切深指数FPI与地质参数和掘进参数都具有较好的相关性,作为联系掘进参数与地质参数的纽带。
2.如权利要求1所述的一种基于PCA-KNN的TBM施工围岩综合分级预测方法,其特征是,对收集到的影响因素指标的原始指标数据x1、x2、x3、x4、x5、x6进行均值方差归一化。
3.如权利要求2所述的一种基于PCA-KNN的TBM施工围岩综合分级预测方法,其特征是,对获得的归一化指标数据进行主成分分析时,计算指标间的Pearson相关系数矩阵;
计算相关矩阵R的特征值和特征向量;
基于特征值及累计方差贡献率确定主成分个数。
4.如权利要求3所述的一种基于PCA-KNN的TBM施工围岩综合分级预测方法,其特征是,利用低维度的主成分变量和相对应的围岩分级用KNN算法进行训练学习,建立数学模型;
基于训练数据获得检测数据的主成分变量,并用以对建立的KNN数学模型验证其准确性。
5.如权利要求1所述的一种基于PCA-KNN的TBM施工围岩综合分级预测方法,其特征是,获取未开挖掌子面附近进行影响因素指标值进行提取主成分并带入数学模型中进行预测适用于TBM开挖隧道的围岩级别。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201911120644.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:包括屏蔽层的显示装置
- 下一篇:一种矿用潜水泵前端自清洗机构
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理





